CHAI Jing, ZHANG Ruixin, OUYANG Yibo, et al. CatBoost mine pressure appearance prediction based on Bayesian algorithm optimization[J]. Journal of Mine Automation,2023,49(7):83-91. DOI: 10.13272/j.issn.1671-251x.2022110065
Citation: CHAI Jing, ZHANG Ruixin, OUYANG Yibo, et al. CatBoost mine pressure appearance prediction based on Bayesian algorithm optimization[J]. Journal of Mine Automation,2023,49(7):83-91. DOI: 10.13272/j.issn.1671-251x.2022110065

CatBoost mine pressure appearance prediction based on Bayesian algorithm optimization

More Information
  • Received Date: November 15, 2022
  • Revised Date: July 27, 2023
  • Available Online: August 06, 2023
  • Obtaining mine pressure data through traditional monitoring methods and using statistical or machine learning algorithms to predict mine pressure can no longer meet the requirements of intelligent development in mines. It is necessary to seek new methods to improve the accuracy and real-time performance of mine pressure data monitoring and prediction. Based on three-dimensional similar physical model experiments, a distributed fiber optic monitoring system is constructed. The distributed fiber optic cables are pre-embedded along the model's direction and height. Pressure data is collected during the simulated mining process of the working face, and the optical fiber Brillouin frequency shift mean variation degree is introduced as an indicator to determine whether the pressure is coming. By preprocessing the optical fiber monitoring data such as noise removal, normalization and phase space reconstruction, the one-dimensional initial monitoring data is converted into three-dimensional data. The method uses Bayesian algorithm to iteratively optimize the parameters of the CatBoost algorithm. After reaching the maximum number of iterations, the optimal parameter combination is loaded into the CatBoost algorithm. The prediction model for mine pressure appearance is obtained by training. The results show that the Bayesian algorithm has fewer iterations and smaller errors than traditional grid search methods. Compared with random forest (RF), gradient boosting decision tree (GBDT) and extreme gradient boosting (XGBoost), the CatBoost algorithm has higher prediction accuracy and stronger generalization capability. The CatBoost mine pressure appearance prediction model optimized by the Bayesian algorithm can accurately predict the three weighting in the test set. The overall prediction trend is in line with the measured value, with mean absolute error of 0.0091, root-mean-square error of 0.0077, and determination coefficient of 0.933 9.
  • [1]
    袁亮. “煤炭精准开采背景下的矿井地质保障”专辑特邀主编致读者[J]. 煤炭学报,2019,44(8):2275-2276.

    YUAN Liang. Invited editor-in-chief of the album "Mine Geological Guarantee in the Context of Precise Coal Mining" to readers[J]. Journal of China Coal Society,2019,44(8):2275-2276.
    [2]
    张俊文,钟帅,梁珠擎. 矿区生态环境“三位一体”治理技术研究[J]. 煤炭技术,2020,39(6):106-109.

    ZHANG Junwen,ZHONG Shuai,LIANG Zhuqing. Study on "trinity" governance technology of mining area ecological environment[J]. Coal Technology,2020,39(6):106-109.
    [3]
    王双明. 对我国煤炭主体能源地位与绿色开采的思考[J]. 中国煤炭,2020,46(2):11-16.

    WANG Shuangming. Thoughts about the main energy status of coal and green mining in China[J]. China Coal,2020,46(2):11-16.
    [4]
    蓝航,陈东科,毛德兵. 我国煤矿深部开采现状及灾害防治分析[J]. 煤炭科学技术,2016,44(1):39-46.

    LAN Hang,CHEN Dongke,MAO Debing. Current status of deep mining and disaster prevention in China[J]. Coal Science and Technology,2016,44(1):39-46.
    [5]
    崔铁军,马云东. 基于泛函网络的周期来压预测方法研究[J]. 计算机科学,2013,40(增刊1):243-246.

    CUI Tiejun,MA Yundong. Prediction of periodic weighting based on optimized functional networks[J]. Computer Science,2013,40(S1):243-246.
    [6]
    赵毅鑫,杨志良,马斌杰,等. 基于深度学习的大采高工作面矿压预测分析及模型泛化[J]. 煤炭学报,2020,45(1):54-65.

    ZHAO Yixin,YANG Zhiliang,MA Binjie,et al. Deep learning prediction and model generalization of ground pressure for deep longwall face with large mining height[J]. Journal of China Coal Society,2020,45(1):54-65.
    [7]
    贾澎涛,苗云风. 基于堆叠LSTM的多源矿压预测模型分析[J]. 矿业研究与开发,2021,41(8):79-82.

    JIA Pengtao,MIAO Yunfeng. Multi-source mine pressure prediction model analysis based on stacked-LSTM[J]. Mining Research and Development,2021,41(8):79-82.
    [8]
    贺超峰,华心祝,杨科,等. 基于BP神经网络的工作面周期来压预测[J]. 安徽理工大学学报(自然科学版),2012,32(1):59-63.

    HE Chaofeng,HUA Xinzhu,YANG Ke,et al. Forecast of periodic weighting in working face based on back-propagation neural network[J]. Journal of Anhui University of Science and Technology(Natural Science),2012,32(1):59-63.
    [9]
    李楠,王恩元,GE Maochen. 微震监测技术及其在煤矿的应用现状与展望[J]. 煤炭学报,2017,42(增刊1):83-96. DOI: 10.13225/j.cnki.jccs.2016.0852

    LI Nan,WANG Enyuan,GE Maochen. Microseismic monitoring technique and its applications at coal mines:present status and future prospects[J]. Journal of China Coal Society,2017,42(S1):83-96. DOI: 10.13225/j.cnki.jccs.2016.0852
    [10]
    王恩元,李忠辉,李德行,等. 电磁辐射监测技术装备在煤与瓦斯突出监测预警中的应用[J]. 煤矿安全,2020,51(10):46-51.

    WANG Enyuan,LI Zhonghui,LI Dexing,et al. Application of electromagnetic radiation monitoring equipment in monitoring and warning of coal and gas outburst[J]. Safety in Coal Mines,2020,51(10):46-51.
    [11]
    张平松,许时昂,郭立全,等. 采场围岩变形与破坏监测技术研究进展及展望[J]. 煤炭科学技术,2020,48(3):14-48.

    ZHANG Pingsong,XU Shiang,GUO Liquan,et al. Prospect and progress of deformation and failure monitoring technology of surrounding rock in stope[J]. Coal Science and Technology,2020,48(3):14-48.
    [12]
    CHAI Jing,DU Wengang,YUAN Qiang,et al. Analysis of test method for physical model test of mining based on optical fiber sensing technology detection[J]. Optical Fiber Technology,2019,48:84-94. DOI: 10.1016/j.yofte.2018.12.026
    [13]
    VILLALBA S,CASAS J R. Application of optical fiber distributed sensing to health monitoring of concrete structures[J]. Mechanical Systems and Signal Processing,2013,39(1):441-451.
    [14]
    CHAPELEAU X,SEDRAN T,COTTINEAU L M,et al. Study of ballastless track structure monitoring by distributed optical fiber sensors on a real-scale mockup in laboratory[J]. Engineering Structures,2013,56:1751-1757. DOI: 10.1016/j.engstruct.2013.07.005
    [15]
    柴敬,霍晓斌,钱云云,等. 采场覆岩变形和来压判别的分布式光纤监测模型试验[J]. 煤炭学报,2018,43(增刊1):36-43.

    CHAI Jing,HUO Xiaobin,QIAN Yunyun,et al. Model test for evaluating deformation and weighting of overlying strata by distributed optical fiber sensing[J]. Journal of China Coal Society,2018,43(S1):36-43.
    [16]
    冀汶莉,刘艺欣,柴敬,等. 基于随机森林的矿压预测方法[J]. 采矿与岩层控制工程学报,2021,3(3):71-81.

    JI Wenli,LIU Yixin,CHAI Jing,et al. Mine pressure prediction method based on random forest[J]. Journal of Mining and Strata Control Engineering,2021,3(3):71-81.
    [17]
    王润沛. 基于机器学习的分布式光纤监测覆岩变形矿压预测研究[D]. 西安: 西安科技大学, 2020.

    WANG Runpei. Research on prediction of deformed mine pressure of overburden under distributed optical fiber monitoring based on machine learning[D]. Xi'an: Xi'an University of Science and Technology, 2020.
    [18]
    柴敬,王润沛,杜文刚,等. 基于XGBoost的光纤监测矿压时序预测研究[J]. 采矿与岩层控制工程学报,2020,2(4):64-71.

    CHAI Jing,WANG Runpei,DU Wengang,et al. Study on time series prediction of rock pressure by XGBoost in optical fiber monitoring[J]. Journal of Mining and Strata Control Engineering,2020,2(4):64-71.
    [19]
    董力铭,曾文治,雷国庆. 分类梯度提升算法(CatBoost)与蝙蝠算法(Bat)耦合建模预测中国西北部地区水面蒸发量[J]. 节水灌溉,2021(2):63-69.

    DONG Liming,ZENG Wenzhi,LEI Guoqing. Coupling CatBoost model with bat algorithm to simulate the pan evaporation in northwest China[J]. Water Saving Irrigation,2021(2):63-69.
    [20]
    郭步豪. 基于梯度提升机器学习算法的ECG身份识别[D]. 长春: 吉林大学, 2020.

    GUO Buhao. ECG identity recognition based on gradient boosting machine learning algorithm[D]. Changchun: Jilin University, 2020.
    [21]
    李晓花. 基于贝叶斯算法的网络安全评估模型研究[J]. 电子设计工程,2021,29(5):154-158,163.

    LI Xiaohua. Research on network security evaluation model based on Bayesian algorithm[J]. Electronic Design Engineering,2021,29(5):154-158,163.
    [22]
    李叶紫,王振友,周怡璐,等. 基于贝叶斯最优化的Xgboost算法的改进及应用[J]. 广东工业大学学报,2018,35(1):23-28. DOI: 10.12052/gdutxb.170124

    LI Yezi,WANG Zhenyou,ZHOU Yilu,et al. The improvement and application of Xgboost method based on Bayesian optimization[J]. Journal of Guangdong University of Technology,2018,35(1):23-28. DOI: 10.12052/gdutxb.170124
  • Related Articles

    [1]LIU Hai, WANG Qiyao, GAO Peng, WANG Xinyan, FENG Xingyu, CUI Hongzhong, GAO Pengfei. Design of terahertz metasurface methane sensor based on bound states in the continuum[J]. Journal of Mine Automation, 2025, 51(2): 48-56. DOI: 10.13272/j.issn.1671-251x.18220
    [2]WEI Chunxian, LI Tao, LIAN Changjin. The application of time sensitive network in coal mine[J]. Journal of Mine Automation, 2024, 50(S1): 65-68,99.
    [3]LIU Hai, ZHOU Tong, CHEN Cong, GAO Peng, DAI Yaowei, WANG Xiaolin, DUAN Senhao, GAO Zongyang. Design of all dielectric metasurface methane sensor based on Fano resonance[J]. Journal of Mine Automation, 2023, 49(9): 106-114. DOI: 10.13272/j.issn.1671-251x.18108
    [4]SONG Haoming, HUANG Yourui, CHEN Zhenping, XU Shanyong, ZHANG Chao. Distributed accurate time synchronization algorithm for underground coal mine time-sensitive network[J]. Journal of Mine Automation, 2021, 47(4): 51-56. DOI: 10.13272/j.issn.1671-251x.2020090008
    [5]LI Yue, CHEN Qing, DING Enjie, CHENG Long. Far-field seismic source positioning method based on improved GA algorithm[J]. Journal of Mine Automation, 2018, 44(2): 84-89. DOI: 10.13272/j.issn.1671-251x.2017090042
    [6]CUI Chuanbo, JIANG Shuguang, WANG Kai, SHAO Hao, WU Zhenyan. Adjustment of mine air volume based on air volume dispatchable model[J]. Journal of Mine Automation, 2016, 42(2): 39-43. DOI: 10.13272/j.issn.1671-251x.2016.02.010
    [7]YANG Ren-di~, ZHANG Yan-li~. Design of Intelligent Methane Concentration Detector[J]. Journal of Mine Automation, 2009, 35(11): 69-72.
    [8]LU Qing-gang, LE Xiao-rong. Sensitive Overload Protection of Motor Based on Thermal Model[J]. Journal of Mine Automation, 2009, 35(6): 46-49.
    [9]LIU Zhi-cun~, SUN Lin-feng~. Study on Automatic Adjustment of Zero and Correction of Sensitivity of Mine Intelligent Methane Sensor[J]. Journal of Mine Automation, 2005, 31(3): 4-6.
    [10]WANG Yu-mei, ZHANG Ying-qi, AI Yong-le. The Way to Improve the Measurement Sensitivity of Cross Breakagy Prediction Device for Strong Transportation Belt[J]. Journal of Mine Automation, 1998, 24(4): 51-53.
  • Cited by

    Periodical cited type(8)

    1. 张玉涛,路旭,李亚清,张园勃,车博. 低甲烷气氛下褐煤的低温氧化特性研究. 安全与环境学报. 2024(02): 517-524 .
    2. 王斌,贾澎涛,郭风景,孙刘咏,林开义. 基于多特征融合的煤自燃温度深度预测模型. 中国矿业. 2024(02): 84-90 .
    3. 田富超,贾东旭,陈明义,梁运涛,朱红青,张同浩. 采空区复合灾害环境下含瓦斯煤自燃特征研究进展. 煤炭学报. 2024(06): 2711-2727 .
    4. 叶正亮,龚选平,尚博,胡冕. 煤自燃全过程精准预测预报指标体系研究与应用. 矿业研究与开发. 2023(09): 141-145 .
    5. 贾澎涛,林开义,郭风景. 基于PSO-SRU深度神经网络的煤自燃温度预测模型. 工矿自动化. 2022(04): 105-113 . 本站查看
    6. 董轩萌,郭立稳,张少华,董宪伟,王福生. 氧化煤阻化性能的FTIR研究. 工业安全与环保. 2021(07): 34-39 .
    7. 骆大勇,刘振. 许疃煤矿煤炭自燃指标气体优选与应用. 矿业安全与环保. 2021(05): 69-74 .
    8. 刘宝,穆坤,叶飞,汪帆,王静婷. 基于相关向量机的煤自燃预测方法. 工矿自动化. 2020(09): 104-108 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (171) PDF downloads (18) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return