LIU Bao, MU Kun, YE Fei, WANG Fan, WANG Jingting. Prediction method of coal spontaneous combustion based on relevance vector machine[J]. Journal of Mine Automation, 2020, 46(9): 104-108. DOI: 10.13272/j.issn.1671-251x.17578
Citation: LIU Bao, MU Kun, YE Fei, WANG Fan, WANG Jingting. Prediction method of coal spontaneous combustion based on relevance vector machine[J]. Journal of Mine Automation, 2020, 46(9): 104-108. DOI: 10.13272/j.issn.1671-251x.17578

Prediction method of coal spontaneous combustion based on relevance vector machine

More Information
  • In terms of coal spontaneous combustion degree prediction, the radial basis function (RBF) neural network method is complex in structure and easy to fall into local optimum, the kernel function based on support vector machine (SVM) is sensitive to parameters due to Mercer condition, the traditional machine learning method has a large error. For the above problems, a coal spontaneous combustion prediction method based on relevance vector machine (RVM) is proposed. Taking Tingnan Coal Mine which is prone to spontaneous combustion as an example, the temperature rising process of coal sample spontaneous combustion is simulated, and the data of gas concentration and coal spontaneous combustion temperature are collected to establish training samples and test samples. The RVM model is constructed from the training samples, and the optimal parameters of the model are obtained. The test samples are substituted into the trained RVM model to predict coal spontaneous combustion temperature. Compared with coal spontaneous combustion prediction methods based on RBF neural network and SVM, the results show that the coal spontaneous combustion prediction methods based on RBF neural network and SVM have small training error but large test error, which indicates that the two methods have over fitting phenomenon and poor generalization ability. The training error and test error of the coal spontaneous combustion prediction method based on RVM are close and prediction accuracy is the highest.
  • Related Articles

    [1]JIA Pengtao, ZHANG Jie, GUO Fengjing. Coal spontaneous combustion temperature prediction model for goaf area based on GAT-Informer[J]. Journal of Mine Automation, 2024, 50(11): 92-98, 108. DOI: 10.13272/j.issn.1671-251x.2024080022
    [2]ZHAI Xiaowei, LUO Jinlei, ZHANG Yuchen, SONG Bobo, HAO Le, ZHOU Yujie. Prediction model of coal spontaneous combustion temperature based on data filling[J]. Journal of Mine Automation, 2023, 49(1): 28-35, 98. DOI: 10.13272/j.issn.1671-251x.2022090032
    [3]JIA Pengtao, LIN Kaiyi, GUO Fengjing. A temperature prediction model for coal spontaneous combustion based on PSO-SRU deep artificial neural networks[J]. Journal of Mine Automation, 2022, 48(4): 105-113. DOI: 10.13272/j.issn.1671-251x.2021090047
    [4]LIU Yikang, NIU Huiyong, NIE Qimiao, LU Yi, LI Shilin. Study on the distribution of O2 concentration field of coal spontaneous combustion in high ground temperature goaf[J]. Journal of Mine Automation, 2021, 47(8): 108-114. DOI: 10.13272/j.issn.1671-251x.2020120021
    [5]HAO Yu, YE Zhengliang. Research on index gas and activation energy of coal spontaneous combustion under different methane atmosphere[J]. Journal of Mine Automation, 2019, 45(11): 65-69. DOI: 10.13272/j.issn.1671-251x.2019040104
    [6]ZHOU Dong, LIU Zhentang, QIAN Jifa, LIN Song, LIU Guanhua. Analysis of gas characteristics and generation rules of coal spontaneous combustion in goaf[J]. Journal of Mine Automation, 2019, 45(3): 18-22. DOI: 10.13272/j.issn.1671-251x.2018090037
    [7]WU Fusheng. Experimental study on composite gas indexes optimization for coal spontaneous combustion predictio[J]. Journal of Mine Automation, 2018, 44(7): 61-65. DOI: 10.13272/j.issn.1671-251x.17341
    [8]WANG Xiaolu, LI Guomin, TANG Shancheng, HUANG Jia. Prediction of uncertainties of gas emission quantity based on RVM[J]. Journal of Mine Automation, 2015, 41(8): 51-55. DOI: 10.13272/j.issn.1671-251x.2015.08.013
    [9]SUN Yun-xiao, FANG Jian, MA Xiao-ping. Research of Prediction of Coal and Gas Outburst Based on Semi-supervised Learning and Support Vector Machine[J]. Journal of Mine Automation, 2012, 38(11): 40-42.
    [10]WANG Yong, CHENG Can, DAI Ming-jun, SUN Yong. An Optimized Method for Semi-supervised Support Vector Machines[J]. Journal of Mine Automation, 2010, 36(12): 47-50.
  • Cited by

    Periodical cited type(18)

    1. 王树明. 空气湿度对煤自燃特性及氧化动力学参数的影响研究. 煤矿安全. 2024(04): 98-105 .
    2. 董康宁,闫寿庆,张宝龙. 基于AI自学习的煤层自燃特征气体定量评价研究. 工矿自动化. 2024(S1): 104-109 . 本站查看
    3. 张嬿妮,姚迪,张陆陆,舒盼,段正肖,翟芳妍. 封闭储煤场煤自燃高温点运移规律及反演预测研究. 中国安全生产科学技术. 2024(06): 78-84 .
    4. 杨英兵,邢真强,张运增,郭佳策,李龙,鹿文勇,陈明浩. 煤自燃全阶段防控研究进展及趋势分析. 煤矿安全. 2024(07): 85-101 .
    5. 童保国,姜福领,毕寸光,王亮,田坤云. 基于LSTM改进Transformer的煤自燃温度预测模型. 金属矿山. 2024(12): 275-280 .
    6. 李军,张宇轩,高彬,惠博,毛小娃. 陕北侏罗纪煤田浅埋近距离煤层煤自燃预测预报体系研究. 煤炭技术. 2023(01): 138-142 .
    7. 刘永立,刘晓伟,王海涛. 基于LSTM神经网络的煤矿火灾预测. 黑龙江科技大学学报. 2023(01): 1-5 .
    8. 要华伟,何晓东,王喆. 基于固-气耦合的不同氧气条件下煤粉点燃数值研究. 工矿自动化. 2022(03): 107-111+117 . 本站查看
    9. 王丹. RVM在煤自燃预测中的应用研究. 煤. 2022(04): 1-5 .
    10. 贾澎涛,林开义,郭风景. 基于PSO-SRU深度神经网络的煤自燃温度预测模型. 工矿自动化. 2022(04): 105-113 . 本站查看
    11. 张志旭,杨胜强,蔡佳文,周步壮. 基于加权马氏距离-灰靶决策模型的煤自燃程度判定方法. 中国科技论文. 2022(05): 508-515 .
    12. 周旭,王认卓,代亚勋,张九零,孙玉雯. 基于BO-XGBoost的煤自燃分级预警研究. 煤炭工程. 2022(08): 108-114 .
    13. 廖亚楠,王业林,李萌,肖清泰,王华. 基于CEEMDAN-RVM-EC的还原冶炼温度预报. 控制理论与应用. 2022(11): 2177-2184 .
    14. 孙超,姜琳,袁广玉. “十四五”期间我国煤炭供需趋势分析. 煤炭工程. 2021(05): 193-196 .
    15. 郑学召,李梦涵,张嬿妮,姜鹏,王宝元. 基于随机森林算法的煤自燃温度预测模型研究. 工矿自动化. 2021(05): 58-64 . 本站查看
    16. 张怡,陈莹,陈宠. 煤炭易自燃煤层采空区温度预测方法研究. 能源与环保. 2021(07): 94-99 .
    17. 仲晓星,王建涛,周昆. 矿井煤自燃监测预警技术研究现状及智能化发展趋势. 工矿自动化. 2021(09): 7-17 . 本站查看
    18. 刘锋. 基于PCA-RVM的煤矿瓦斯浓度预测研究. 内蒙古煤炭经济. 2021(23): 70-72 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (102) PDF downloads (15) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return