LIU Hai, WANG Qiyao, GAO Peng, et al. Design of terahertz metasurface methane sensor based on bound states in the continuum[J]. Journal of Mine Automation,2025,51(2):48-56. DOI: 10.13272/j.issn.1671-251x.18220
Citation: LIU Hai, WANG Qiyao, GAO Peng, et al. Design of terahertz metasurface methane sensor based on bound states in the continuum[J]. Journal of Mine Automation,2025,51(2):48-56. DOI: 10.13272/j.issn.1671-251x.18220

Design of terahertz metasurface methane sensor based on bound states in the continuum

More Information
  • Received Date: November 05, 2024
  • Revised Date: February 19, 2025
  • Available Online: March 10, 2025
  • Compared to traditional methane sensors used in mines, the metasurface methane sensor has significant advantages in sensitivity, stability, and other aspects, making it better suited to meet the practical needs of mine production. To address the issue of relatively low sensitivity to refractive index in existing metal terahertz metasurface sensors, a terahertz metasurface methane sensor based on bound states in the continuum was designed. The metasurface structure consisted of a three-layer configuration: metal dielectric metal (MDM), where the metal material was gold, and the dielectric material was polyimide. The upper metal structure was a circle, and by adjusting the size of the opening on the left side, the symmetry of the structure could be altered, which in turn induced quasi bound states in the continuum (QBIC). The analysis results showed that when the left-side opening gap was 5 μm, the modulation depth was maximal at 95.69%. A methane-sensitive membrane material (cryptophane-A) was then applied to the metasurface structure to form the methane sensor. Five different methane volume fractions and five environmental refractive indices were selected to validate the methane sensor's detection performance. The results showed that the sensitivity of the metal terahertz metasurface sensor to refractive index and methane volume fraction were 949 GHz/RIU and 4.4 GHz/%, respectively, and both the refractive index and methane volume fraction exhibited a good linear relationship with the QBIC resonance peak shift. A square ring metal metasurface methane sensor was designed and compared with the circular ring structure. It was found that the circular ring structure outperformed the square ring structure in terms of Q factor, modulation depth, and sensitivity.

  • [1]
    张超林,王恩元,王奕博,等. 近20年我国煤与瓦斯突出事故时空分布及防控建议[J]. 煤田地质与勘探,2021,49(4):134-141. DOI: 10.3969/j.issn.1001-1986.2021.04.016

    ZHANG Chaolin,WANG Enyuan,WANG Yibo,et al. Spatial-temporal distribution of outburst accidents from 2001 to 2020 in China and suggestions for prevention and control[J]. Coal Geology & Exploration,2021,49(4):134-141. DOI: 10.3969/j.issn.1001-1986.2021.04.016
    [2]
    国家安全生产监督管理总局. 煤矿安全规程[M]. 北京:煤炭工业出版社,2022.

    State Administration of Work Safety. Coal mine safety regulations[M]. Beijing:Coal Industry Press,2022.
    [3]
    马啸,卫琛浩,景欣瑞,等. 矿井瓦斯传感器研究现状及发展趋势[J]. 煤炭与化工,2023,46(3):99-102,105.

    MA Xiao,WEI Chenhao,JING Xinrui,et al. Research status and development trend of mine gas sensor[J]. Coal and Chemical Industry,2023,46(3):99-102,105.
    [4]
    刘文鹏,陈向东,吴宇尘. 基于脉冲供电的催化燃烧式气体传感系统[J]. 信息技术,2020,44(8):1-6,11.

    LIU Wenpeng,CHEN Xiangdong,WU Yuchen. Catalytic combustion gas sensing system based on pulse power[J]. Information Technology,2020,44(8):1-6,11.
    [5]
    CHEN Yang,ZHANG Wenshuang,LUO Na,et al. Defective ZnO nanoflowers decorated by ultra-fine Pd clusters for low-concentration CH4 sensing:controllable preparation and sensing mechanism analysis[J]. Coatings,2022,12(5). DOI: 10.3390/coatings12050677.
    [6]
    陈享享,刘天豪,欧阳云飞,等. 基于金属氧化物半导体的瓦斯气体传感器研究现状及进展[J]. 金属矿山,2023(11):34-44.

    CHEN Xiangxiang,LIU Tianhao,OUYANG Yunfei,et al. Research status and progress of coal mine gas sensor based on metal oxide semiconductor[J]. Metal Mine,2023(11):34-44.
    [7]
    梁运涛,陈成锋,田富超,等. 甲烷气体检测技术及其在煤矿中的应用[J]. 煤炭科学技术,2021,49(4):40-48.

    LIANG Yuntao,CHEN Chengfeng,TIAN Fuchao,et al. Methane gas detection technology and its application in coal mines[J]. Coal Science and Technology,2021,49(4):40-48.
    [8]
    FENG Jixin,WANG Xianghui,SHI Weinan,et al. Asymmetric dumbbell dimers simultaneously supporting quasi-bound states in continuum and anapole modes for terahertz biosensing[J]. Nanophotonics,2024,13(21):4007-4017. DOI: 10.1515/nanoph-2024-0254
    [9]
    LYU Qihao,QIN Xu,HU Mingzhe,et al. Metatronics-inspired high-selectivity metasurface filter[J]. Nanophotonics,2024,13(16):2995-3003. DOI: 10.1515/nanoph-2024-0123
    [10]
    QARONY W,MAYET A S,PONIZOVSKAYA-DEVINE E,et al. Achieving higher photoabsorption than group III-V semiconductors in ultrafast thin silicon photodetectors with integrated photon-trapping surface structures[J]. Advanced Photonics Nexus,2023,2(5). DOI: 10.1117/1.APN.2.5.056001.
    [11]
    LI Liu,WANG Shuai,ZHAO Feng,et al. Single-shot deterministic complex amplitude imaging with a single-layer metalens[J]. Science Advances,2024,10(1). DOI: 10.1126/sciadv.adl0501.
    [12]
    LIU Zeqian,WANG Bin,WANG Shang,et al. Mid-infrared high performance dual-Fano resonances based on all-dielectric metasurface for refractive index and gas sensing[J]. Optics & Laser Technology,2024,177. DOI: 10.1016/j.optlastec.2024.111140.
    [13]
    DANILA O,GROSS B M. Towards highly efficient nitrogen dioxide gas sensors in humid and wet environments using triggerable-polymer metasurfaces[J]. Polymers,2023,15(3). DOI: 10.3390/polym15030545.
    [14]
    MARINICA D C,BORISOV A G,SHABANOV S V. Bound states in the continuum in photonics[J]. Physical Review Letters,2008,100(18). DOI: 10.1103/PhysRevLett.100.183902.
    [15]
    姚建铨,李继涛,张雅婷,等. 周期光学系统中的连续域束缚态[J]. 中国光学(中英文),2023,16(1):1-23. DOI: 10.37188/CO.2022-0022

    YAO Jianquan,LI Jitao,ZHANG Yating,et al. Bound states in continuum in periodic optical systems[J]. Chinese Optics,2023,16(1):1-23. DOI: 10.37188/CO.2022-0022
    [16]
    LIU Bingwei,PENG Yan,JIN Zuanming,et al. Terahertz ultrasensitive biosensor based on wide-area and intense light-matter interaction supported by QBIC[J]. Chemical Engineering Journal,2023,462. DOI: 10.1016/j.cej.2023.142347.
    [17]
    WANG Ride,XU Lei,HUANG Lujun,et al. Ultrasensitive terahertz biodetection enabled by quasi-BIC-based metasensors[J]. Small,2023,19(35). DOI: 10.1002/smll.202301165.
    [18]
    刘海,周彤,陈聪,等. 基于Fano共振的全介质型超表面甲烷传感器设计[J]. 工矿自动化,2023,49(9):106-114.

    LIU Hai,ZHOU Tong,CHEN Cong,et al. Design of all dielectric metasurface methane sensor based on Fano resonance[J]. Journal of Mine Automation,2023,49(9):106-114.
    [19]
    CHEN Xu,FAN Wenhui,JIANG Xiaoqiang,et al. High-Q toroidal dipole metasurfaces driven by bound states in the continuum for ultrasensitive terahertz sensing[J]. Journal of Lightwave Technology,2022,40(7):2181-2190. DOI: 10.1109/JLT.2021.3132727
    [20]
    LEI Pengliang,NIE Guozheng,LI Huilin,et al. Multifunctional terahertz device based on plasmon-induced transparency[J]. Physica Scripta,2024,99(7). DOI: 10.1088/1402-4896/ad5120.
    [21]
    王帅. 基于SPR的光纤甲烷气体传感研究[D]. 西安:西安石油大学,2021.

    WANG Shuai. Research on fiber optic methane gas sensing based on SPR[D]. Xi'an:Xi'an Shiyou University,2021.
    [22]
    郭岩宝,刘承诚,王德国,等. 甲烷传感器气敏材料的研究现状与进展[J]. 科学通报,2019,64(14):1456-1470. DOI: 10.1360/N972018-00698

    GUO Yanbao,LIU Chengcheng,WANG Deguo,et al. Advances in the development of methane sensors with gas-sensing materials[J]. Chinese Science Bulletin,2019,64(14):1456-1470. DOI: 10.1360/N972018-00698
    [23]
    YANG Jianchun,ZHOU Lang,CHE Xin,et al. Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A[J]. Sensors and Actuators B:Chemical,2016,235:717-722. DOI: 10.1016/j.snb.2016.05.125
    [24]
    CHEN Yuxuan,SUN Yongzheng,ZHOU Weijun,et al. Conductively coupled terahertz metamaterials with dual functions of electromagnetically induced transparent and Fano effects for sensing applications[J]. Physica Scripta,2024,99(10). DOI: 10.1088/1402-4896/ad7338.
    [25]
    CHEN Yiqin,BI Kaixi,WANG Qianjin,et al. Rapid focused ion beam milling based fabrication of plasmonic nanoparticles and assemblies via "sketch and peel" strategy[J]. ACS Nano,2016,10(12):11228-11236. DOI: 10.1021/acsnano.6b06290
    [26]
    RUSSELL B J,MENG Jiajun,CROZIER K B. Mid-infrared gas classification using a bound state in the continuum metasurface and machine learning[J]. IEEE Sensors Journal,2023,23(19):22389-22398. DOI: 10.1109/JSEN.2023.3305598
  • Related Articles

    [1]LIU Hai, ZHOU Tong, CHEN Cong, GAO Peng, DAI Yaowei, WANG Xiaolin, DUAN Senhao, GAO Zongyang. Design of all dielectric metasurface methane sensor based on Fano resonance[J]. Journal of Mine Automation, 2023, 49(9): 106-114. DOI: 10.13272/j.issn.1671-251x.18108
    [2]CHEN Fabing, WU Hongjun, CUI Baoge, WANG Yuanjie, LI Yan. Analysis and optimization method of monitoring capability of coal mine microseismic monitoring network[J]. Journal of Mine Automation, 2022, 48(7): 96-104. DOI: 10.13272/j.issn.1671-251x.2022020048
    [3]LIU Changyi, ZHANG Jingyuan, HUANG Xiangdong, ZHANG Ni, LI Jingbo, LIU Jie. Research on gas sensitive mechanism of low concentration methane threshold based on micro-nano ionization sensor[J]. Journal of Mine Automation, 2021, 47(3): 34-40. DOI: 10.13272/j.issn.1671-251x.2020110067
    [4]CUI Chuanbo, JIANG Shuguang, WANG Kai, SHAO Hao, WU Zhenyan. Adjustment of mine air volume based on air volume dispatchable model[J]. Journal of Mine Automation, 2016, 42(2): 39-43. DOI: 10.13272/j.issn.1671-251x.2016.02.010
    [5]LI Si-guang. Design of a Novel Phase-sensitive Protector[J]. Journal of Mine Automation, 2012, 38(9): 23-26.
    [6]YANG Ren-di~, ZHANG Yan-li~. Design of Intelligent Methane Concentration Detector[J]. Journal of Mine Automation, 2009, 35(11): 69-72.
    [7]LU Qing-gang, LE Xiao-rong. Sensitive Overload Protection of Motor Based on Thermal Model[J]. Journal of Mine Automation, 2009, 35(6): 46-49.
    [8]LIU Zhi-cun~, SUN Lin-feng~. Study on Automatic Adjustment of Zero and Correction of Sensitivity of Mine Intelligent Methane Sensor[J]. Journal of Mine Automation, 2005, 31(3): 4-6.
    [9]MA Tian-bing~, SUN Bing~. Overview on Fiber-optic Sensing Technology in Sensitive Structure[J]. Journal of Mine Automation, 2005, 31(2): 26-28.
    [10]WANG Yu-mei, ZHANG Ying-qi, AI Yong-le. The Way to Improve the Measurement Sensitivity of Cross Breakagy Prediction Device for Strong Transportation Belt[J]. Journal of Mine Automation, 1998, 24(4): 51-53.

Catalog

    Article Metrics

    Article views (39) PDF downloads (6) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return