JIA Pengtao, LIN Kaiyi, GUO Fengjing. A temperature prediction model for coal spontaneous combustion based on PSO-SRU deep artificial neural networks[J]. Journal of Mine Automation,2022,48(4):105-113. DOI: 10.13272/j.issn.1671-251x.2021090047
Citation: JIA Pengtao, LIN Kaiyi, GUO Fengjing. A temperature prediction model for coal spontaneous combustion based on PSO-SRU deep artificial neural networks[J]. Journal of Mine Automation,2022,48(4):105-113. DOI: 10.13272/j.issn.1671-251x.2021090047

A temperature prediction model for coal spontaneous combustion based on PSO-SRU deep artificial neural networks

More Information
  • Received Date: September 12, 2021
  • Revised Date: February 23, 2022
  • Available Online: April 12, 2022
  • Traditional temperature prediction models for coal spontaneous combustion typically have low generality and robustness. This paper improves them by proposing a coal spontaneous combustion temperature prediction model based on particle swarm optimization and simple recurrent unit(PSO-SRU). It firstly pre-processes the gas concentration data collected from temperature programmed oxidation tests, selects the concentration data of O2, CO, CO2, CH4, C2H4 that highly relate to the coal temperature as the prediction indicators, and further separates the indicators into training and testing data sets. Then, a SRU based prediction model over the training data set is trained to learn the nonlinear relationship between the coal spontaneous combustion temperature and the indicators. Mean absolute error(MAE) forms the fitness function and PSO algorithms are involved to optimize the SRU prediction model's parameters. Finally, the PSO-SRU model with optimized parameters are applied over the testing data set to predict the coal spontaneous combustion temperature. Experiments show the PSO-SRU model can improve the prediction accuracy, as the model's MAE and root mean square error(RMSE), comparing with those generated by support vector regression(SVR), random forest(RF), and back propagation(BP), decreases by 12.58, 7.65, 5.91 ℃, and 22.65, 17.45, 8.94 ℃ respectively. The PSO-SRU model also demonstrates a good generality and robustness, as the difference of determination coefficient (R2) of the model over the training and testing data sets is only 0.03.
  • [1]
    谢和平,吴立新,郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报,2019,44(7):1949-1960.

    XIE Heping,WU Lixin,ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society,2019,44(7):1949-1960.
    [2]
    林柏泉,李庆钊,周延. 煤矿采空区瓦斯与煤自燃复合热动力灾害多场演化研究进展[J]. 煤炭学报,2021,46(6):1715-1726.

    LIN Baiquan,LI Qingzhao,ZHOU Yan. Research advances about multi-field evolution of coupled thermodynamic disaster in coal mine goaf[J]. Journal of China Coal Society,2021,46(6):1715-1726.
    [3]
    邓军,白祖锦,肖旸,等. 煤自燃灾害防治技术现状与挑战[J]. 煤矿安全,2020,51(10):118-125.

    DENG Jun,BAI Zujin,XIAO Yang,et al. Present situation and challenge of coal spontaneous combustion disasters prevention and control technology[J]. Safety in Coal Mines,2020,51(10):118-125.
    [4]
    程卫民,张孝强,王刚,等. 综放采空区瓦斯与遗煤自燃耦合灾害危险区域重建技术[J]. 煤炭学报,2016,41(3):662-671.

    CHENG Weimin,ZHANG Xiaoqiang,WANG Gang,et al. Reconstruction technology of gas and coal spontaneous combustion coupled hazard in fully mechanized caving goaf[J]. Journal of China Coal Society,2016,41(3):662-671.
    [5]
    张玉涛,李亚清,邓军,等. 煤炭自燃灾变过程突变特性研究[J]. 中国安全科学学报,2015,25(1):78-84.

    ZHANG Yutao,LI Yaqing,DENG Jun,et al. Study on catastrophe characteristics of coal spontaneous combustion[J]. China Safety Science Journal,2015,25(1):78-84.
    [6]
    秦波涛,仲晓星,王德明,等. 煤自燃过程特性及防治技术研究进展[J]. 煤炭科学技术,2021,49(1):66-99.

    QIN Botao,ZHONG Xiaoxing,WANG Deming,et al. Research progress of coal spontaneous combustion process characteristics and prevention technology[J]. Journal of Coal Science and Technology,2021,49(1):66-99.
    [7]
    邓军,徐精彩,陈晓坤. 煤自燃机理及预测理论研究进展[J]. 辽宁工程技术大学学报,2003,22(4):455-459.

    DENG Jun,XU Jingcai,CHEN Xiaokun. Perspectives on spontaneous combustion mechanism and prediction theory of coal[J]. Journal of Liaoning Technical University,2003,22(4):455-459.
    [8]
    朱红青,王海燕,王斐然,等. 煤堆测温技术研究进展[J]. 煤炭科学技术,2014,42(1):50-54.

    ZHU Hongqing,WANG Haiyan,WANG Feiran,et al. Research progress on coal stockpile temperature measuring technology[J]. Coal Science and Technology,2014,42(1):50-54.
    [9]
    陈欢,杨永亮. 煤自燃预测技术研究现状[J]. 煤矿安全,2013,44(9):194-197.

    CHEN Huan,YANG Yongliang. Research status of predicting coal spontaneous combustion[J]. Safety in Coal Mines,2013,44(9):194-197.
    [10]
    李林,陈军朝,姜德义,等. 煤自燃全过程高温区域及指标气体时空变化实验研究[J]. 煤炭学报,2016,41(2):444-450.

    LI Lin,CHEN Junchao,JIANG Deyi,et al. Experimental study on temporal variation of high temperature region and index gas of coal spontaneous combustion[J]. Journal of China Coal Society,2016,41(2):444-450.
    [11]
    郝宇,叶正亮. 不同甲烷气氛下煤自燃指标气体及活化能研究[J]. 工矿自动化,2019,45(11):65-69.

    HAO Yu,YE Zhengliang. Research on index gas and activation energy of coal spontaneous combustion under different methane atmosphere[J]. Industry and Mine Automation,2019,45(11):65-69.
    [12]
    周冬,刘贞堂,钱继发,等. 采空区内煤自燃气体特征及产生规律分析[J]. 工矿自动化,2019,45(3):18-22.

    ZHOU Dong,LIU Zhengtang,QIAN Jifa,et al. Analysis of gas characteristics and generation rules of coal spontaneous combustion in goaf[J]. Industry and Mine Automation,2019,45(3):18-22.
    [13]
    金永飞,郭军,文虎,等. 煤自燃高温贫氧氧化燃烧特性参数的实验研究[J]. 煤炭学报,2015,40(3):596-602.

    JIN Yongfei,GUO Jun,WEN Hu,et al. Experimental study on the high temperature lean oxygen oxidation combustion characteristic parameters of coal spontaneous combustion[J]. Journal of China Coal Society,2015,40(3):596-602.
    [14]
    高峰,王文才,李建伟,等. 浅埋煤层群开采复合采空区煤自燃预测[J]. 煤炭学报,2020,45(增刊1):336-345.

    GAO Feng,WANG Wencai,LI Jianwei,et al. Prediction of coal spontaneous combustion in compound gob of shallow seam group mining[J]. Journal of China Coal Society,2020,45(S1):336-345.
    [15]
    LEI Changkui,DENG Jun,CAO Kai,et al. A random forest approach for predicting coal spontaneous combustion[J]. Fuel,2018,223(1):63-73.
    [16]
    邓军,雷昌奎,曹凯,等. 煤自燃预测的支持向量回归方法[J]. 西安科技大学学报,2018,38(2):175-180.

    DENG Jun,LEI Changkui,CAO Kai,et al. Support vector regression approach for predicting coal spontaneous combustion[J]. Journal of Xi'an University of Science and Technology,2018,38(2):175-180.
    [17]
    刘宝,穆坤,叶飞,等. 基于相关向量机的煤自燃预测方法[J]. 工矿自动化,2020,46(9):104-108.

    LIU Bao,MU Kun,YE Fei,et al. Prediction method of coal spontaneous combustion based on relevance vector machine[J]. Industry and Mine Automation,2020,46(9):104-108.
    [18]
    昝军才,魏成才,蒋可娟,等. 基于BP神经网络的煤自燃温度预测研究[J]. 煤炭工程,2019,51(10):113-117.

    ZAN Juncai,WEI Chengcai,JIANG Kejuan,et al. Prediction of coal spontaneous combustion temperature based on BP neural network[J]. Coal Engineering,2019,51(10):113-117.
    [19]
    郑学召,李梦涵,张嬿妮,等. 基于随机森林算法的煤自燃温度预测模型研究[J]. 工矿自动化,2021,47(5):58-64.

    ZHENG Xuezhao,LI Menghan,ZHANG Yanni,et al. Research on the prediction model of coal spontaneous combustion temperature based on random forest algorithm[J]. Industry and Mine Automation,2021,47(5):58-64.
    [20]
    TAO Lei, YU Zhang, WANG Sidai, et al. Simple recurrent units for highly parallelizable recurrence[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, 2018: 4470-4481.
    [21]
    KENNEDY J, EBERHART R C. Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks, Perth, 1995: 1942-1948.
    [22]
    闫群民,马瑞卿,马永翔,等. 一种自适应模拟退火粒子群优化算法[J]. 西安电子科技大学学报,2021,48(4):120-127.

    YAN Qunmin,MA Ruiqing,MA Yongxiang,et al. Adaptive simulated annealing particle swarm optimization algorithm[J]. Journal of Xidian University,2021,48(4):120-127.
    [23]
    敖永才,师奕兵,张伟,等. 自适应惯性权重的改进粒子群算法[J]. 电子科技大学学报,2014,43(6):874-880.

    AO Yongcai,SHI Yibing,ZHANG Wei,et al. Improve particle swarm optimization with adaptive inertia weight[J]. Journal of University of Electronic Science and Technology of China,2014,43(6):874-880.
    [24]
    汪雅文, 钱谦, 冯勇, 等. 融合吸引排斥和双向学习的改进粒子群算法[J/OL]. 计算机工程与应用: 1-9. [2021-07-20]. http://kns.cnki.net/kcms/detail/11.2127.TP.20210618.0839.002.html.

    WANG Yawen, QIAN Qian, FENG Yong, et al. An improved particle swarm optimization algorithm based on attraction-repulsion and bidirectional learning strategies[J/OL]. Computer Science and Application: 1-9. [2021-07-20]. http://kns.cnki.net/kcms/detail/11.2127.TP.20210618.0839.002.html.
    [25]
    姚成玉,赵哲谕,陈东宁,等. 有向动态拓扑混合作用力微粒群优化算法及可靠性应用[J]. 机械工程学报,2017,53(10):166-179. DOI: 10.3901/JME.2017.10.166

    YAO Chengyu,ZHAO Zheyu,CHEN Dongning,et al. Unidirectional dynamic topology hybrid force PSO algorithm and its applications in reliability optimization[J]. Journal of Mechanical Engineering,2017,53(10):166-179. DOI: 10.3901/JME.2017.10.166
  • Related Articles

    [1]GAI Yonggang. A defogging algorithm for coal mine underground images based on dark channel guided filtering and lighting correction[J]. Journal of Mine Automation, 2024, 50(6): 89-95. DOI: 10.13272/j.issn.1671-251x.2024030048
    [2]MU Qi, GE Xiangfu, WANG Xinyue, LI Lei, LI Zhanli. A coal mine underground image enhancement method based on multi-scale gradient domain guided image filtering[J]. Journal of Mine Automation, 2024, 50(6): 79-88, 111. DOI: 10.13272/j.issn.1671-251x.2023080126
    [3]MIAO Zuohua, ZHAO Chengcheng, ZHU Liangjian, LIU Daiwen, CHEN Aoguang. Image enhancement algorithm for non-uniform illumination in underground mines[J]. Journal of Mine Automation, 2023, 49(11): 92-99. DOI: 10.13272/j.issn.1671-251x.2023060032
    [4]HONG Yan, ZHU Danping, GONG Pingshun. Retinex mine image enhancement algorithm based on TopHat weighted guided filtering[J]. Journal of Mine Automation, 2022, 48(8): 43-49. DOI: 10.13272/j.issn.1671-251x.2022020029
    [5]FAN Zhanwen, LIU Bo. Research on adaptive enhancement technology of low illumination image based on improved Retinex[J]. Journal of Mine Automation, 2021, 47(S1): 126-130.
    [6]TANG Shoufeng, SHI Ke, TONG Guangming, SHI Jingcan, LI Huashuo. A mine low illumination image enhancement algorithm[J]. Journal of Mine Automation, 2021, 47(10): 32-36. DOI: 10.13272/j.issn.1671-251x.2021060052
    [7]LIU Xiaoyang, QIAO Tong, QIAO Zhi. Image enhancement method of mine based on bilateral filtering and Retinex algorithm[J]. Journal of Mine Automation, 2017, 43(2): 49-54. DOI: 10.13272/j.issn.1671-251x.2017.02.011
    [8]LI Xinnia. Improved non-local means filtering algorithm for video monitoring image of coal mine[J]. Journal of Mine Automation, 2015, 41(6): 66-70. DOI: 10.13272/j.issn.1671-251x.2015.06.016
    [9]ZHANG Qia. A filtering method for infrared image based on improved pseudo median filtering and non-local means filtering[J]. Journal of Mine Automation, 2014, 40(12): 57-60. DOI: 10.13272/j.issn.1671-251x.2014.12.015
    [10]LIU Yi, JIA Xu-fen, TIAN Zi-jia. A processing method for underground image of uneven illumination based on homomorphic filtering theory[J]. Journal of Mine Automation, 2013, 39(1): 9-12.
  • Cited by

    Periodical cited type(14)

    1. 汪学明,刘峰. 基于RV1126的井下运输煤流感应传感器设计. 煤矿机电. 2025(01): 31-36 .
    2. 闫明伟. 煤矿井下巷道行驶车辆车前障碍物检测方法研究. 矿业安全与环保. 2024(01): 168-174 .
    3. 郭永辉. 煤矿井下图像增强算法研究. 矿山机械. 2024(06): 53-57 .
    4. 张延军,夏黎明. 基于改进加权引导滤波的煤矿井下图像除雾算法研究. 矿业研究与开发. 2023(05): 203-210 .
    5. 姚超修,蒋泽,胡亚磊. 基于改进EnlightenGAN的煤矿井下图像增强算法. 煤炭技术. 2023(09): 219-222 .
    6. 苏波,李超,王莉. 基于多权重融合策略的Retinex矿井图像增强算法. 煤炭学报. 2023(S2): 813-822 .
    7. 乔佳伟,贾运红. Retinex算法在煤矿井下图像增强的应用研究. 煤炭技术. 2022(03): 193-195 .
    8. 陈晨,梁霄. 低照度下平面图像舒适色度范围测定方法. 吉林化工学院学报. 2022(05): 83-88 .
    9. 樊占文,刘波. 基于改进的Retinex低照度图像自适应增强技术研究. 工矿自动化. 2021(S1): 126-130 . 本站查看
    10. 王永杰. 基于FPGA的低照度环境下激光图像增强研究. 激光杂志. 2021(05): 68-72 .
    11. 杨帅,田益民,李璐瑶,郑美俊,高雪,宋方方. 局部相关的非线性采矿图像增强算法. 科技通报. 2021(10): 44-47 .
    12. 魏峰. 基于情景感知驱动的煤矿监察装备及平台设计. 煤炭工程. 2020(07): 157-160 .
    13. 蔡改贫,汪龙,罗小燕,姜志宏. 基于分块处理的矿石图像多阈值二值化算法. 矿业研究与开发. 2020(12): 153-157 .
    14. 范伟强,刘毅. 基于自适应小波变换的煤矿降质图像模糊增强算法. 煤炭学报. 2020(12): 4248-4260 .

    Other cited types(17)

Catalog

    Article Metrics

    Article views (222) PDF downloads (39) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return