XUE Xusheng, YANG Xingyun, QI Guanghao, et al. Design of foreign object recognition and positioning system for sorting robot of coal mine belt conveyor[J]. Journal of Mine Automation,2022,48(12):33-41. DOI: 10.13272/j.issn.1671-251x.2022100024
Citation: XUE Xusheng, YANG Xingyun, QI Guanghao, et al. Design of foreign object recognition and positioning system for sorting robot of coal mine belt conveyor[J]. Journal of Mine Automation,2022,48(12):33-41. DOI: 10.13272/j.issn.1671-251x.2022100024

Design of foreign object recognition and positioning system for sorting robot of coal mine belt conveyor

More Information
  • Received Date: October 11, 2022
  • Revised Date: December 04, 2022
  • Available Online: December 04, 2022
  • Machine vision has a certain theoretical basis in target detection and recognition for sorting robot of coal mine belt conveyor. But current target recognition of sorting robot of coal mine belt conveyor is mainly aimed at coal-gangue recognition. There are few kinds of research on the recognition of foreign object targets causing conveyor belt penetration and tearing, and also few kinds of research on the precise positioning of target foreign object. In order to solve the above problems, a foreign object recognition and positioning system based on machine vision for sorting robots of coal mine belt conveyor is designed. The system can recognize and position different types and shapes of foreign objects on the conveyor belt. The image information of the foreign objects on the conveyor belt in real-time is obtained by adopting binocular vision, and the image is preprocessed. Image information is enhanced based on the Canny operator. The gray stretching method is used to improve image edge information to highlight the edge features of foreign objects on coal mine belt conveyor. The morphological method is used to extract foreign object shape features, and establish foreign object image feature sample library. The image feature matching method is used to solve the existing area of foreign objects to realize the detection, classification and recognition of foreign objects. On the basis of the successful recognition of foreign object type, the region of interest (ROI) of the target foreign object is established based on the edge feature value of the target foreign object. The coordinate conversion relationship is built between the camera, conveyor belt and target foreign object. The fast multi-target centroid calculation method is used to obtain the centroid coordinate of the target foreign object, so as to realize the positioning of the target foreign object. The experimental result of the system prototype shows that the foreign object recognition rate of foreign object recognition and positioning system for sorting robot of coal mine belt conveyor is not affected by the size, material, color and other factors, the system can realize the image acquisition, process, feature extraction, recognition and positioning of the target foreign object of coal mine conveyor belt. The recognition rate is above 92.5%, and the average error of the target foreign object positioning is about 3%.
  • [1]
    刘峰. 对煤矿智能化发展的认识和思考[J]. 中国煤炭工业,2020(8):5-9. DOI: 10.3969/j.issn.1673-9612.2020.08.002

    LIU Feng. Understanding and thinking on intelligent development of coal mine[J]. China Coal Industry,2020(8):5-9. DOI: 10.3969/j.issn.1673-9612.2020.08.002
    [2]
    葛世荣. 煤矿机器人现状及发展方向[J]. 中国煤炭,2019,45(7):18-27. DOI: 10.3969/j.issn.1006-530X.2019.07.004

    GE Shirong. Present situation and development direction of coal mine robots[J]. China Coal,2019,45(7):18-27. DOI: 10.3969/j.issn.1006-530X.2019.07.004
    [3]
    文灵,谢元媛. 利用机器视觉远程监测煤矿带式输送机故障[J]. 能源与环保,2022,44(7):201-205.

    WEN Ling,XIE Yuanyuan. Remote monitoring of faults of coal mine belt conveyor by machine vision[J]. China Energy and Environmental Protection,2022,44(7):201-205.
    [4]
    刘莉莉,苗长云. 基于机器视觉的带式输送机带速检测方法的研究[J]. 仪表技术与传感器,2020(7):118-121,126. DOI: 10.3969/j.issn.1002-1841.2020.07.024

    LIU Lili,MIAO Changyun. Research on belt conveyor speed detection based on machine vision[J]. Instrument Technique and Sensor,2020(7):118-121,126. DOI: 10.3969/j.issn.1002-1841.2020.07.024
    [5]
    杨春雨,顾振,张鑫,等. 基于深度学习的带式输送机煤流量双目视觉测量[J]. 仪器仪表学报,2021,41(8):164-174. DOI: 10.19650/j.cnki.cjsi.J2107842

    YANG Chunyu,GU Zhen,ZHANG Xin,et al. Binocular vision measurement of coal flow of belt conveyors based on deep learning[J]. Chinese Journal of Scientific Instrument,2021,41(8):164-174. DOI: 10.19650/j.cnki.cjsi.J2107842
    [6]
    陈晓晶. 井工煤矿运输系统智能化技术现状及发展趋势[J]. 工矿自动化,2022,48(6):6-14, 35. DOI: 10.13272/j.issn.1671-251x.17933

    CHEN Xiaojing. Current status and development trend of intelligent technology of underground coal mine transportation system[J]. Journal of Mine Automation,2022,48(6):6-14, 35. DOI: 10.13272/j.issn.1671-251x.17933
    [7]
    王志星,乔铁柱. 带式输送机胶带纵向撕裂双目视觉在线检测系统研究与设计[J]. 中国煤炭,2018,44(4):87-90, 105. DOI: 10.3969/j.issn.1006-530X.2018.04.016

    WANG Zhixing,QIAO Tiezhu. Study and design on binocular vision online monitoring system of conveyor belt longitudinal tearing[J]. China Coal,2018,44(4):87-90, 105. DOI: 10.3969/j.issn.1006-530X.2018.04.016
    [8]
    王燕,郭潇樯,刘新华. 带式输送机大块异物视觉检测系统设计[J]. 机械科学与技术,2021,40(12):1939-1943. DOI: 10.13433/j.cnki.1003-8728.20200284

    WANG Yan,GUO Xiaoqiang,LIU Xinhua. Design of visual detection system for large foreign body in belt conveyor[J]. Mechanical Science and Technology for Aerospace Engineering,2021,40(12):1939-1943. DOI: 10.13433/j.cnki.1003-8728.20200284
    [9]
    苗长云,陈雯. 基于机器视觉和支持向量机的带式输送机矸石检测方法[J]. 天津工业大学学报,2022,41(1):60-65. DOI: 10.3969/j.issn.1671-024x.2022.01.010

    MIAO Changyun,CHEN Wen. A method for detecting gangue of belt conveyor based on machine vision and support vector machine[J]. Journal of Tiangong University,2022,41(1):60-65. DOI: 10.3969/j.issn.1671-024x.2022.01.010
    [10]
    杜京义,陈瑞,郝乐,等. 煤矿带式输送机异物检测[J]. 工矿自动化,2021,47(8):77-83. DOI: 10.13272/j.issn.1671-251x.2021040026

    DU Jingyi,CHEN Rui,HAO Le,et al. Coal mine belt conveyor foreign object detection[J]. Industry and Mine Automation,2021,47(8):77-83. DOI: 10.13272/j.issn.1671-251x.2021040026
    [11]
    胡璟皓,高妍,张红娟,等. 基于深度学习的带式输送机非煤异物识别方法[J]. 工矿自动化,2021,47(6):57-62,90.

    HU Jinghao,GAO Yan,ZHANG Hongjuan,et al. Research on the identification method of non-coal foreign object of belt conveyor based on deep learning[J]. Industry and Mine Automation,2021,47(6):57-62,90.
    [12]
    吴守鹏,丁恩杰,俞啸. 基于改进FPN的输送带异物识别方法[J]. 煤矿安全,2019,50(12):127-130.

    WU Shoupeng,DING Enjie,YU Xiao. Foreign body identification of belt based on improved FPN[J]. Safety in Coal Mines,2019,50(12):127-130.
    [13]
    马宏伟,孙那新,张烨,等. 煤矸石分拣机器人动态目标稳定抓取轨迹规划[J]. 工矿自动化,2022,48(4):20-30. DOI: 10.13272/j.issn.1671-251x.2021110050

    MA Hongwei,SUN Naxin,ZHANG Ye,et al. Track planning of coal gangue sorting robot for dynamic target stable grasping[J]. Journal of Mine Automation,2022,48(4):20-30. DOI: 10.13272/j.issn.1671-251x.2021110050
    [14]
    曹现刚,刘思颖,王鹏,等. 面向煤矸分拣机器人的煤矸识别定位系统研究[J]. 煤炭科学技术,2022,50(1):237-246. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201024

    CAO Xiangang,LIU Siying,WANG Peng,et al. Research on coal gangue identification and positioning system based on coal-gangue sorting robot[J]. Coal Science and Technology,2022,50(1):237-246. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201024
    [15]
    王鹏,曹现刚,夏晶,等. 基于机器视觉的多机械臂煤矸石分拣机器人系统研究[J]. 工矿自动化,2019,45(9):47-53. DOI: 10.13272/j.issn.1671-251x.17442

    WANG Peng,CAO Xiangang,XIA Jing,et al. Research on multi-manipulator coal and gangue sorting robot system based on machine vision[J]. Industry and Mine Automation,2019,45(9):47-53. DOI: 10.13272/j.issn.1671-251x.17442
    [16]
    MATTONE R,CAMPAGIORNI G,GALATI F,et al. Sorting of items on a moving conveyor belt-part 1:a technique for detecting and classifying objects[J]. Robotics and Computer-Integrated Manufacturing,2000,16(2/3):73-80.
    [17]
    FEIERABEND A. Application of NIR measurement technique for the identification and sorting of mineral rocks[J]. Gesellschaft Fuer Bergbau,Metallurgie,Rohstoff-und UmwelttechnikSchriftenreihe,2010(122):33.
    [18]
    石康,叶宏,胡安灿,等. 一种基于LabVIEW的机器视觉标定和校正方法[J]. 激光与光电子学进展,2014,51(10):127-136.

    SHI Kang. YE Hong,HU Ancan,et al. A new method for machine vision calibration and rectification based on LabVIEW[J]. Laser & Optoelectronics Progress,2014,51(10):127-136.
    [19]
    涂波,刘璐,刘一会,等. 一种扩展小孔成像模型的鱼眼相机矫正与标定方法[J]. 自动化学报,2014,40(4):653-659.

    TU Bo,LIU Lu,LIU Yihui,et al. A calibration method for fish-eye cameras based on pinhole model[J]. Acta Automatica Sinica,2014,40(4):653-659.
    [20]
    李海,王若璞,陈勇,等. 图像全站仪星点质心快速提取方法研究[J]. 测绘科学技术学报,2019,36(5):482-486.

    LI Hai,WANG Ruopu,CHEN Yong,et al. Fast star centroid extraction method for image total station[J]. Journal of Geomatics Science and Technology,2019,36(5):482-486.
  • Related Articles

    [1]CHEN Tengjie, LI Yong'an, ZHANG Zhihao, LIN Bin. Foreign object detection and counting method for belt conveyor based on improved YOLOv8n+DeepSORT[J]. Journal of Mine Automation, 2024, 50(8): 91-98. DOI: 10.13272/j.issn.1671-251x.2024070043
    [2]HONG Yan, WANG Lei, SU Jingming, WANG Hantao, LI Mushi. Foreign object detection of coal mine conveyor belt based on improved YOLOv8[J]. Journal of Mine Automation, 2024, 50(6): 61-69. DOI: 10.13272/j.issn.1671-251x.2024050006
    [3]SHEN Ning. Surface foreign object detection of belt conveyor used in coal preparation plant based on binocular vision[J]. Journal of Mine Automation, 2023, 49(S1): 82-85.
    [4]CAO Zhengyuan, JIANG Wei, FANG Chenghui. Intelligent detection method for coal flow foreign objects based on dual attention generative adversarial network[J]. Journal of Mine Automation, 2023, 49(12): 56-62. DOI: 10.13272/j.issn.1671-251x.18094
    [5]TANG Jun, LI Jingzhao, SHI Qing, YANG Ping, WANG Rui. Real time detection of foreign objects in belt conveyors based on Faster-YOLOv7[J]. Journal of Mine Automation, 2023, 49(11): 46-52, 66. DOI: 10.13272/j.issn.1671-251x.2023020037
    [6]MAO Qinghua, LI Shikun, HU Xin, XUE Xusheng, YAO Lijie. Foreign object recognition of belt conveyor in coal mine based on improved YOLOv7[J]. Journal of Mine Automation, 2022, 48(12): 26-32. DOI: 10.13272/j.issn.1671-251x.2022100011
    [7]SHI Lingkai, GENG Yide, WANG Hongwei, WANG Hongli. Multi-object detection of iron foreign bodies in scraper conveyor based on improved Mask R-CNN[J]. Journal of Mine Automation, 2022, 48(10): 55-61. DOI: 10.13272/j.issn.1671-251x.2022080029
    [8]DU Jingyi, CHEN Rui, HAO Le, SHI Zhimang. Coal mine belt conveyor foreign object detectio[J]. Journal of Mine Automation, 2021, 47(8): 77-83. DOI: 10.13272/j.issn.1671-251x.2021040026
    [9]HU Jinghao, GAO Yan, ZHANG Hongjuan, JIN Baoquan. Research on the identification method of non-coal foreign object ofbelt conveyor based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 57-62. DOI: 10.13272/j.issn.1671-251x.2021020041
    [10]SUN Jiping, LI Yue. Binocular vision-based perception and positioning method of mine external fire[J]. Journal of Mine Automation, 2021, 47(6): 12-16. DOI: 10.13272/j.issn.1671-251x.17766
  • Cited by

    Periodical cited type(20)

    1. 王鑫. 皮带运输机异物检测方案设计. 机械管理开发. 2025(01): 145-146+207 .
    2. 张国鸣. 煤矿带式输送机电气控制系统设计. 煤炭技术. 2024(01): 252-255 .
    3. 王枫,张胜. 基于立体视觉的高速公路收费机器人目标识别方法. 自动化与仪器仪表. 2024(04): 189-192 .
    4. 黄章瑞,程文婷. 基于机器学习的四足移动机器人视觉导航方法. 信息与电脑(理论版). 2024(05): 43-45 .
    5. 黄家林,方欢. 煤矿带式输送机数字孪生系统的HCPN性能评价方法. 电子设计工程. 2024(16): 22-26 .
    6. 徐明辉. 煤矿带式输送机综合控制技术的运用研究. 内蒙古煤炭经济. 2024(13): 130-132 .
    7. 侯晶男. 矿用带式输送机监控系统的设计及应用分析. 机械管理开发. 2024(08): 227-229 .
    8. 梅晓虎,吕小强,雷萌. 基于Stair-YOLOv7-tiny的煤矿井下输送带异物检测. 工矿自动化. 2024(08): 99-104+111 . 本站查看
    9. 窦小雨. 基于激光传感技术的电子商务配送机器人自动化控制系统设计. 自动化与仪器仪表. 2024(09): 253-257 .
    10. 黄晨烜,常健,王雷. 基于激光雷达的井下带式输送机边缘提取方法. 工矿自动化. 2024(09): 115-123 . 本站查看
    11. 唐弢,王振邦,许聪,李春宇. 基于视觉技术的物流分拣机器人自动定位系统设计. 自动化与仪器仪表. 2023(06): 188-191 .
    12. 刘卫东. 煤矿主运带式输送机自动控制系统的设计与应用. 矿业装备. 2023(06): 189-191 .
    13. 旷永龙. 煤矿带式输送机非煤异物检测系统设计与试验. 山西焦煤科技. 2023(08): 28-30+42 .
    14. 毛清华,郭文瑾,翟姣,王荣泉,尚新芒,李世坤,薛旭升. 煤矿带式输送机异常状态视频AI识别技术研究. 工矿自动化. 2023(09): 36-46 . 本站查看
    15. 沈宁. 基于双目视觉的选煤厂用胶带输送机表面异物检测. 工矿自动化. 2023(S1): 82-85 . 本站查看
    16. 李哲,伍世英,袁宝欣,许昌. 一种智能高效识别与分拣机器人方案设计思路. 科技风. 2023(30): 1-3 .
    17. 禹万林,郁杰. 基于负载预测的矿用带式输送机调速系统设计. 煤炭技术. 2023(12): 264-267 .
    18. 耿延兵,王章国. 基于图像灰度识别的煤泥水絮凝沉降速率快速检测方法. 工矿自动化. 2023(12): 87-93 . 本站查看
    19. 曹正远,蒋伟,方成辉. 基于双注意力生成对抗网络的煤流异物智能检测方法. 工矿自动化. 2023(12): 56-62 . 本站查看
    20. 李江涛,张康辉,沙特. 煤中异物识别的深度学习模型轻量化策略. 煤炭工程. 2023(S1): 220-224 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (1278) PDF downloads (86) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return