Citation: | MEI Xiaohu, LYU Xiaoqiang, LEI Meng. Foreign object detection of coal mine underground conveyor belt based on Stair-YOLOv7-tiny[J]. Journal of Mine Automation,2024,50(8):99-104, 111. DOI: 10.13272/j.issn.1671-251x.18172 |
[1] |
YAN Pengcheng,SUN Quansheng,YIN Nini,et al. Detection of coal and gangue based on improved YOLOv5.1 which embedded scSE module[J]. Measurement,2022,188. DOI: 10.1016/j.measurement.2021.110530.
|
[2] |
WANG Yong,JIANG Zhipeng,WANG Yihan,et al. Intelligent detection of foreign objects over coal flow based on improved GANomaly[J]. Journal of Intelligent & Fuzzy Systems,2024,46(3):5841-5851.
|
[3] |
WANG Xi,GUO Yongcun,WANG Shuang,et al. Rapid detection of incomplete coal and gangue based on improved PSPNet[J]. Measurement,2022,201. DOI: 10.1016/j.measurement.2022.111646.
|
[4] |
DOU Dongyang,WU Wenze,YANG Jianguo,et al. Classification of coal and gangue under multiple surface conditions via machine vision and relief-SVM[J]. Powder Technology,2019,356:1024-1028. DOI: 10.1016/j.powtec.2019.09.007
|
[5] |
王燕,郭潇樯,刘新华. 带式输送机大块异物视觉检测系统设计[J]. 机械科学与技术,2021,40(12):1939-1943.
WANG Yan,GUO Xiaoqiang,LIU Xinhua. Design of visual detection system for large foreign body in belt conveyor[J]. Mechanical Science and Technology for Aerospace Engineering,2021,40(12):1939-1943.
|
[6] |
程健,王东伟,杨凌凯,等. 一种改进的高斯混合模型煤矸石视频检测方法[J]. 中南大学学报(自然科学版),2018,49(1):118-123. DOI: 10.11817/j.issn.1672-7207.2018.01.016
CHENG Jian,WANG Dongwei,YANG Lingkai,et al. An improved Gaussian mixture model for coal gangue video detection[J]. Journal of Central South University (Science and Technology),2018,49(1):118-123. DOI: 10.11817/j.issn.1672-7207.2018.01.016
|
[7] |
PU Yuanyuan,APEL D B,SZMIGIEL A,et al. Image recognition of coal and coal gangue using a convolutional neural network and transfer learning[J]. Energies,2019,12(9). DOI: 10.3390/en12091735.
|
[8] |
程德强,徐进洋,寇旗旗,等. 融合残差信息轻量级网络的运煤皮带异物分类[J]. 煤炭学报,2022,47(3):1361-1369.
CHENG Deqiang,XU Jinyang,KOU Qiqi,et al. Lightweight network based on residual information for foreign body classification on coal conveyor belt[J]. Journal of China Coal Society,2022,47(3):1361-1369.
|
[9] |
曹正远,蒋伟,方成辉. 基于双注意力生成对抗网络的煤流异物智能检测方法[J]. 工矿自动化,2023,49(12):56-62.
CAO Zhengyuan,JIANG Wei,FANG Chenghui. Intelligent detection method for coal flow foreign objects based on dual attention generative adversarial network[J]. Journal of Mine Automation,2023,49(12):56-62.
|
[10] |
杨建辉,黄子洋,汪梅,等. 机器视觉灰度化金字塔卷积模型的煤流异物识别[J]. 煤炭科学技术,2022,50(11):194-201.
YANG Jianhui,HUANG Ziyang,WANG Mei,et al. Recognition of unwanted objects in coal flow based on gray pyramid convolution model of machine vision[J]. Coal Science and Technology,2022,50(11):194-201.
|
[11] |
薛旭升,杨星云,齐广浩,等. 煤矿带式输送机分拣机器人异物识别与定位系统设计[J]. 工矿自动化,2022,48(12):33-41.
XUE Xusheng,YANG Xingyun,QI Guanghao,et al. Design of foreign object recognition and positioning system for sorting robot of coal mine belt conveyor[J]. Journal of Mine Automation,2022,48(12):33-41.
|
[12] |
任志玲,朱彦存. 改进CenterNet算法的煤矿皮带运输异物识别研究[J]. 控制工程,2023,30(4):703-711.
REN Zhiling,ZHU Yancun. Research on foreign object detection of coal mine belt transportation with improved CenterNet algorithm[J]. Control Engineering of China,2023,30(4):703-711.
|
[13] |
ZHANG Mengchao,CAO Yueshuai,JIANG Kai,et al. Proactive measures to prevent conveyor belt failures:deep learning-based faster foreign object detection[J]. Engineering Failure Analysis,2022,141. DOI: 10.1016/j.engfailanal.2022.106653.
|
[14] |
郝帅,张旭,马旭,等. 基于CBAM−YOLOv5的煤矿输送带异物检测[J]. 煤炭学报,2022,47(11):4147-4156.
HAO Shuai,ZHANG Xu,MA Xu,et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society,2022,47(11):4147-4156.
|
[15] |
高涵,赵培培,于正,等. 基于特征增强与Transformer的煤矿输送带异物检测[J]. 煤炭科学技术,2024,52(7):199-208. DOI: 10.12438/cst.2023-1336
GAO Han,ZHAO Peipei,YU Zheng,et al. Coal mine conveyor belt foreign object detection based on feature enhancement and Transformer[J]. Coal Science and Technology,2024,52(7):199-208. DOI: 10.12438/cst.2023-1336
|
[16] |
WANG C Y,BOCHKOVSKIY A,LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Vancouver,2023:7464-7475.
|
[17] |
唐俊,李敬兆,石晴,等. 基于Faster−YOLOv7的带式输送机异物实时检测[J]. 工矿自动化,2023,49(11):46-52,66.
TANG Jun,LI Jingzhao,SHI Qing,et al. Real time detection of foreign objects in belt conveyors based on Faster-YOLOv7[J]. Journal of Mine Automation,2023,49(11):46-52,66.
|
[18] |
付翔,秦一凡,李浩杰,等. 新一代智能煤矿人工智能赋能技术研究综述[J]. 工矿自动化,2023,49(9):122-131,139.
FU Xiang,QIN Yifan,LI Haojie,et al. Summary of research on artificial intelligence empowerment technology for new generation intelligent coal mine[J]. Journal of Mine Automation,2023,49(9):122-131,139.
|
[19] |
ZHANG Xindong,ZENG Hui,GUO Shi,et al. Efficient long-range attention network for image super-resolution[C]. European Conference on Computer Vision,Tel Aviv,2022:649-667.
|
[20] |
ZHANG Bin,XIAO Deqin,LIU Junbin,et al. Pig eye area temperature extraction algorithm based on registered images[J]. Computers and Electronics in Agriculture,2024,217. DOI: 10.1016/j.compag.2023.108549.
|
[21] |
JIA Kunming,NIU Qunfeng,WANG Li,et al. A new efficient multi-object detection and size calculation for blended tobacco shreds using an improved YOLOv7 network and LWC algorithm[J]. Sensors,2023,23(20). DOI: 10.3390/s23208380.
|
[22] |
MA Ningning,ZHANG Xiangyu,ZHENG Haitao,et al. ShuffleNet V2:practical guidelines for efficient CNN architecture design[C]. European Conference on Computer Vision,Munich,2018:122-138.
|
1. |
马力. 井下5G网络覆盖问题及优化方案探讨. 工矿自动化. 2024(S1): 61-64+91 .
![]() | |
2. |
戴剑波. 基于UWB精确定位智能搜救仪设计. 自动化与仪器仪表. 2024(08): 298-301+306 .
![]() | |
3. |
田利. 基于大数据分析的危险源预警系统. 工矿自动化. 2023(S2): 87-88 .
![]() |