Volume 50 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
CHEN Tengjie, LI Yong'an, ZHANG Zhihao, et al. Foreign object detection and counting method for belt conveyor based on improved YOLOv8n+DeepSORT[J]. Journal of Mine Automation,2024,50(8):91-98.  doi: 10.13272/j.issn.1671-251x.2024070043
Citation: CHEN Tengjie, LI Yong'an, ZHANG Zhihao, et al. Foreign object detection and counting method for belt conveyor based on improved YOLOv8n+DeepSORT[J]. Journal of Mine Automation,2024,50(8):91-98.  doi: 10.13272/j.issn.1671-251x.2024070043

Foreign object detection and counting method for belt conveyor based on improved YOLOv8n+DeepSORT

doi: 10.13272/j.issn.1671-251x.2024070043
  • Received Date: 2024-07-11
  • Rev Recd Date: 2024-08-22
  • Available Online: 2024-08-12
  • The existing foreign object detection methods for belt conveyors have problems such as weak capability to extract object semantic information, poor detection precision, and only recognizing and detecting foreign objects. The methods cannot accurately calculate the number of foreign objects. In order to solve the above problems, a foreign object detection and counting method for belt conveyors based on improved YOLOv8n+DeepSORT has been designed. The method improves the YOLOv8n model and then uses the improved YOLOv8n model to recognize foreign objects in belt conveyors. The method uses the foreign object detection results of the improved YOLOv8n model as input for the DeepSORT algorithm to achieve foreign object tracking and counting on belt conveyors. YOLOv8n improvement method is replacing the C2f module in the backbone network with the C2f_MLCA module to improve the network's information extraction capability in a single color information environment. The method improves the head section using the separated and enhancement attention module (SEAM) to enhance the detection precision of foreign objects when they are obstructed. The method uses Focaler IoU optimization loss function to solve the problem of large differences in the shape of detection objects. The performance verification experiment results of MSF-YOLOv8n model show that the mAP50 of MSF-YOLOv8n model reaches 93.2%, which is 2.1% higher than the basic model. The parameter count is only 2.82×106, which is 0.19×106 less than the basic model, making it more suitable for deployment in edge devices such as inspection robots. The detection precision is 2.2%, 1.3%, and 0.3% higher than YOLOv5s, YOLOv7, and YOLOv8s algorithms, respectively. Although its frame rate is lower than YOLOv8s and YOLOv8n, it still meets the requirements of real-time video detection. The results of foreign object detection and counting experiments show that the DeepSORT algorithm has an accuracy rate of 80% and can accurately track occluded anchor rods and objects with significant shape differences.

     

  • loading
  • [1]
    王国法,杜毅博,徐亚军,等. 中国煤炭开采技术及装备50年发展与创新实践——纪念《煤炭科学技术》创刊50周年[J]. 煤炭科学技术,2023,51(1):1-18.

    WANG Guofa,DU Yibo,XU Yajun,et al. Development and innovation practice of China coal mining technology and equipment for 50 years:commemorate the 50th anniversary of the publication of Coal Science and Technology[J]. Coal Science and Technology,2023,51(1):1-18.
    [2]
    邓军,李鑫,王凯,等. 矿井火灾智能监测预警技术近20年研究进展及展望[J]. 煤炭科学技术,2024,41(1):154-177.

    DENG Jun,LI Xin,WANG Kai,et al. Research progress and prospect of mine fire intelligent monitoring and early warning technology in recent 20 years[J]. Coal Science and Technology,2024,41(1):154-177.
    [3]
    葛世荣,胡而已,李允旺. 煤矿机器人技术新进展及新方向[J]. 煤炭学报,2023,48(1):54-73.

    GE Shirong,HU Eryi,LI Yunwang. New progress and direction of robot technology in coal mine[J]. Journal of China Coal Society,2023,48(1):54-73.
    [4]
    程德强,钱建生,郭星歌,等. 煤矿安全生产视频AI识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349-365.

    CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349-365.
    [5]
    吴守鹏,丁恩杰,俞啸. 基于改进FPN的输送带异物识别方法[J]. 煤矿安全,2019,50(12):127-130.

    WU Shoupeng,DING Enjie,YU Xiao. Foreign body identification of belt based on improved FPN[J]. Safety in Coal Mines,2019,50(12):127-130.
    [6]
    郝帅,张旭,马旭,等. 基于CBAM−YOLOv5的煤矿输送带异物检测[J]. 煤炭学报,2022,47(11):4147-4156.

    HAO Shuai,ZHANG Xu,MA Xu,et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society,2022,47(11):4147-4156.
    [7]
    高涵,赵培培,于正,等. 基于特征增强与Transformer的煤矿输送带异物检测[J]. 煤炭科学技术,2024,52(7):199-208.

    GAO Han,ZHAO Peipei,YU Zheng,et al. Coal mine conveyor belt foreign object detection based on feature enhancement and Transformer[J]. Coal Science and Technology,2024,52(7):199-208.
    [8]
    蔡腾,陈慈发,董方敏. 结合Transformer和动态特征融合的低照度目标检测[J]. 计算机工程与应用,2024,60(9):135-141.

    CAI Teng,CHEN Cifa,DONG Fangmin. Low-light object detection combining transformer and dynamic feature fusion[J]. Computer Engineering and Applications,2024,60(9):135-141.
    [9]
    杨豚,郭永存,王爽,等. 煤矿井下无人驾驶轨道电机车障碍物识别[J]. 浙江大学学报(工学版),2024,58(1):29-39.

    YANG Tun,GUO Yongcun,WANG Shuang,et al. Obstacle recognition of unmanned rail electric locomotive in underground coal mine[J]. Journal of Zhejiang University (Engineering Science),2024,58(1):29-39.
    [10]
    王满利,杨爽,张长森. 基于改进YOLOv8n的立井刚性罐道接头错位检测算法[J/OL]. 煤炭科学技术:1-13[2024-06-23]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231207.0926.002.html.

    WANG Manli,YANG Shuang,ZHANG Changsen. An improved YOLOv8n based detection algorithm for misalignment of vertical shaft rigid tank channel joints[J/OL]. Coal Science and Technology:1-13[2024-06-23]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231207.0926.002.html.
    [11]
    徐慈强,贾运红,田原. 基于MES−YOLOv5s的综采工作面大块煤检测算法[J]. 工矿自动化,2024,50(3):42-47,141.

    XU Ciqiang,JIA Yunhong,TIAN Yuan. Large block coal detection algorithm for fully mechanized working face based on MES-YOLOv5s[J]. Journal of Mine Automation,2024,50(3):42-47,141.
    [12]
    陈伟,江志成,田子建,等. 基于YOLOv8的煤矿井下人员不安全动作检测算法[J/OL]. 煤炭科学技术:1-19[2024-06-23]. http://kns.cnki.net/kcms/detail/11.2402.td.20240322.1343.003.html.

    CHEN Wei,JIANG Zhicheng,TIAN Zijian,et al. Unsafe movement detection algorithm for coal mine underground personnel based on YOLOv8[J/OL]. Coal Science and Technology:1-19[2024-06-23]. http://kns.cnki.net/kcms/detail/11.2402.td.20240322.1343.003.html.
    [13]
    WAN Dahang,LU Rongsheng,SHEN Siyuan,et al. Mixed local channel attention for object detection[J]. Engineering Applications of Artificial Intelligence,2023,123. DOI:10.1016/j.engappai. 2023.106442.
    [14]
    洪炎,汪磊,苏静明,等. 基于改进YOLOv8的煤矿输送带异物检测[J]. 工矿自动化,2024,50(6):61-69.

    HONG Yan,WANG Lei,SU Jingming,et al. Foreign object detection of coal mine conveyor belt based on improved YOLOv8[J]. Journal of Mine Automation,2024,50(6):61-69.
    [15]
    YU Ziping,HUANG Hongbo,CHEN Weijun,et al. YOLO-FaceV2:a scale and occlusion aware face detector[J]. Pattern Recognition,2024,155. DOI: 10.1016/j.patcog.2024.110714.
    [16]
    张新月,胡广锐,李浦航,等. 基于改进YOLOv8n的轻量化红花识别方法[J]. 农业工程学报,2024,40(13):163-170.

    ZHANG Xinyue,HU Guangrui,LI Puhang,et al. Recognizing safflower using improved lightweight YOLOv8n[J]. Transactions of the Chinese Society of Agricultural Engineering,2024,40(13):163-170.
    [17]
    ZHANG Hao,ZHANG Shuaijie. Focaler-IoU:more focused intersection over union loss[EB/OL]. [2024-06-23]. https://arxiv.org/html/2401.10525v1.
    [18]
    贾豆豆. 基于YOLOv5+DeepSort的小目标跟踪方法研究[D]. 太原:中北大学,2022.

    JIA Doudou. Research on small target tracking method based on YOLOv5+DeepSort[D]. Taiyuan:North University of China,2022.
    [19]
    赵梓杉,桑海峰. 基于改进的YOLOv5的交通锥标检测系统[J]. 电子测量与仪器学报,2023,37(2):56-64.

    ZHAO Zishan,SANG Haifeng. Traffic cone detection system based on improved YOLOv5[J]. Journal of Electronic Measurement and Instrumentation,2023,37(2):56-64.
    [20]
    程德强,徐进洋,寇旗旗,等. 融合残差信息轻量级网络的运煤皮带异物分类[J]. 煤炭学报,2022,47(3):1361-1369.

    CHENG Deqiang,XU Jinyang,KOU Qiqi,et al. Lightweight network based on residual information for foreign body classification on coal conveyor belt[J]. Journal of China Coal Society,2022,47(3):1361-1369.
    [21]
    王宏伟,李进,闫志蕊,等. 基于图像与点云融合的巷道锚护孔位识别定位方法[J]. 煤炭科学技术,2024,52(5):249-261.

    WANG Hongwei,LI Jin,YAN Zhirui,et al. Roadway anchor hole recognition and positioning method based on image and point cloud fusion[J]. Coal Science and Technology,2024,52(5):249-261.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (186) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return