Citation: | MAO Qinghua, LI Shikun, HU Xin, et al. Foreign object recognition of belt conveyor in coal mine based on improved YOLOv7[J]. Journal of Mine Automation,2022,48(12):26-32. DOI: 10.13272/j.issn.1671-251x.2022100011 |
[1] |
葛世荣,胡而已,裴文良. 煤矿机器人体系及关键技术[J]. 煤炭学报,2020,45(1):455-463. DOI: 10.13225/j.cnki.jccs.YG19.1478
GE Shirong,HU Eryi,PEI Wenliang. Classification system and key technology of coal mine robot[J]. Journal of China Coal Society,2020,45(1):455-463. DOI: 10.13225/j.cnki.jccs.YG19.1478
|
[2] |
方崇全. 煤矿带式输送机巡检机器人关键技术研究[J]. 煤炭科学技术,2022,50(5):263-270. DOI: 10.13199/j.cnki.cst.ZN20-056
FANG Chongquan. Research on key technology of inspection robot for coal mine belt conveyor[J]. Coal Science and Technology,2022,50(5):263-270. DOI: 10.13199/j.cnki.cst.ZN20-056
|
[3] |
吴守鹏,丁恩杰,俞啸. 基于改进FPN的输送带异物识别方法[J]. 煤矿安全,2019,50(12):127-130. DOI: 10.13347/j.cnki.mkaq.2019.12.029
WU Shoupeng,DING Enjie,YU Xiao. Foreign body identification of belt based on improved FPN[J]. Safety in Coal Mines,2019,50(12):127-130. DOI: 10.13347/j.cnki.mkaq.2019.12.029
|
[4] |
吕志强. 复杂环境下煤矿皮带运输异物图像识别研究[D]. 徐州: 中国矿业大学, 2020: 1-60.
LYU Zhiqiang. Research on foreign body image recognition of coal mine belt transport under complex environment[D]. Xuzhou: China University of Mining and Technology, 2020: 1-60.
|
[5] |
任志玲, 朱彦存. 改进CenterNet算法的煤矿皮带运输异物识别研究[J/OL]. 控制工程: 1-8[2022-09-28]. DOI: 10.14107/j. cnki. kzgc. 20200792.
REN Zhiling, ZHU Yancun. Research on foreign objects recognition of coal mine belt transportation with improved CenterNet algorithm[J/OL]. Control Engineering of China: 1-8[2022-09-28]. DOI: 10.14107/j.cnki.kzgc.20200792.
|
[6] |
胡璟皓,高妍,张红娟,等. 基于深度学习的带式输送机非煤异物识别方法[J]. 工矿自动化,2021,47(6):57-62,90. DOI: 10.13272/j.issn.1671-251x.2021020041
HU Jinghao,GAO Yan,ZHANG Hongjuan,et al. Research on the identification method of non-coal foreign object of belt conveyor based on deep learning[J]. Industry and Mine Automation,2021,47(6):57-62,90. DOI: 10.13272/j.issn.1671-251x.2021020041
|
[7] |
WANG Yuanbin,WANG Yujing,DANG Langfei. Video detection of foreign objects on the surface of belt conveyor underground coal mine based on improved SSD[J]. Journal of Ambient Intelligence and Humanized Computing,2020:1-10.
|
[8] |
郝帅,张旭,马旭,等. 基于CBAM−YOLOv5的煤矿输送带异物检测[J]. 煤炭学报,2022,47(11):4147-4156. DOI: 10.13225/j.cnki.jccs.2021.1644
HAO Shuai,ZHANG Xu,MA Xu,et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society,2022,47(11):4147-4156. DOI: 10.13225/j.cnki.jccs.2021.1644
|
[9] |
程德强,徐进洋,寇旗旗,等. 融合残差信息轻量级网络的运煤皮带异物分类[J]. 煤炭学报,2022,47(3):1361-1369. DOI: 10.13225/j.cnki.jccs.xr21.1736
CHENG Deqiang,XU Jinyang,KOU Qiqi,et al. Lightweight network based on residual information for foreign body classification on coal conveyor belt[J]. Journal of China Coal Society,2022,47(3):1361-1369. DOI: 10.13225/j.cnki.jccs.xr21.1736
|
[10] |
XIAO Dong,KANG Zhuang,YU Hang,et al. Research on belt foreign body detection method based on deep learning[J]. Transactions of the Institute of Measurement and Control,2022,44(15):2919-2927. DOI: 10.1177/01423312221094393
|
[11] |
WANG C Y, BOCHKOVSKIY A, LIAO H. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J/OL]. [2022-09-28]. https://arxiv.org/abs/2207.02696.
|
[12] |
杨骥,杨亚东,梅雪,等. 基于改进的限制对比度自适应直方图的视频快速去雾算法[J]. 计算机工程与设计,2015,36(1):221-226. DOI: 10.16208/j.issn1000-7024.2015.01.040
YANG Ji,YANG Yadong,MEI Xue,et al. Fast video dehazing based on improved contrast limited adaptive histogram equalization[J]. Computer Engineering and Design,2015,36(1):221-226. DOI: 10.16208/j.issn1000-7024.2015.01.040
|
[13] |
舒甜督. 医学CT图像的增强与分类算法研究[D]. 长春: 长春工业大学, 2022.
SHU Tiandu. Research on enhancement and classification algorithm of medical CT images[D]. Changchun: Changchun University of Technology, 2022.
|
[14] |
QIN Xiaoyi, LI Na, WENG Chao, et al. Simple attention module based speaker verification with iterative noisy label detection[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, 2021.
|
[15] |
CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017.
|
[16] |
顾德英,罗聿伦,李文超. 基于改进YOLOv5算法的复杂场景交通目标检测[J]. 东北大学学报(自然科学版),2022,43(8):1073-1079.
GU Deying,LUO Yulun,LI Wenchao. Traffic target detection in complex scenes based on improved YOLOv5 algorithm[J]. Journal of Northeastern University(Natural Science),2022,43(8):1073-1079.
|
[17] |
MAO Qinghua,WANG Yufei,ZHANG Xuhui,et al. Clarity method of fog and dust image in fully mechanized mining face[J]. Machine Vision and Applications,2022,33(2):1-16.
|
[18] |
LI Kexin,QIN Liang,LI Qiang,et al. Improved edge lightweight YOLOv4 and its application in on-site power system work[J]. Global Energy Interconnection,2022,5(2):168-180. DOI: 10.1016/j.gloei.2022.04.014
|
[1] | LIU Xiaoyang, LIU Jing, ZHANG Xiangyang, SHEN Lifei, DENG Zhigang, MA Xinyan, WANG Di. Two-dimensional Gabor filter-based belt tear detection[J]. Journal of Mine Automation, 2021, 47(4): 103-107. DOI: 10.13272/j.issn.1671-251x.2020110045 |
[2] | JU Chen, ZHANG Chao, FAN Hongwei, ZHANG Xuhui, YANG Yiqing, YAN Yang. Rolling bearing fault diagnosis based on wavelet packet decomposition and PSO-BPN[J]. Journal of Mine Automation, 2020, 46(8): 70-74. DOI: 10.13272/j.issn.1671-251x.2019120022 |
[3] | WU Bin, LI Lu, SONG Jiancheng, QU Bingni, LI Hongwei, YANG Jiankang. Approach for remaining useful life prediction for mechanical equipment based on similarity[J]. Journal of Mine Automation, 2016, 42(6): 52-56. DOI: 10.13272/j.issn.1671-251x.2016.06.013 |
[4] | CAO Hong, LI Zhen, JIA Hong-gang. Design of Communication Interface between ARM and DSP Based on Dual-port RAM[J]. Journal of Mine Automation, 2012, 38(3): 72-74. |
[5] | ZHANG Li-yong, JIANG Pei-gang, FANG Su-la. Design of Laser Coal Stocktaking System Based on Embedded ARM and GPRS[J]. Journal of Mine Automation, 2010, 36(12): 72-75. |
[6] | LI Zhen, JIA Hong-gang, LI Dong-xiao, CAO Hong. Design of Vibration Monitoring System of Coal Mine Equipments Based on DSP and ARM[J]. Journal of Mine Automation, 2010, 36(10): 1-3. |
[7] | LI Jun, WANG Jin-hai. Remote Update System of ARM Software Based on TFTP[J]. Journal of Mine Automation, 2010, 36(7): 22-25. |
[8] | XIE Ai-ling~(, 2), WU Kan~(, 2). Application Research of R2V and Desktop ArcInfo in Land Reclamation Planning of Mining Area[J]. Journal of Mine Automation, 2009, 35(8): 100-103. |
[9] | JIANG Xiao-yan, LI Shi-yin, ZHANG Ming-sheng, YANG Lei, QIN Li-bo. Analysis of Several Bandwidth Estimate Algorithms of TCP and Its Compariso[J]. Journal of Mine Automation, 2009, 35(4): 35-38. |
[10] | LI Ming-hua. ISOMAP Algorithm and LLE Algorithm in Image Retrieval and Their Compariso[J]. Journal of Mine Automation, 2007, 33(6): 30-31. |
1. |
罗珊珊,何泽家. 基于粒子滤波泰勒算法的变电站人员定位跟踪系统. 微型电脑应用. 2024(03): 102-107+111 .
![]() | |
2. |
李飞,潘红光,魏绪强,陈海舰,郭齐,白俊明. 基于PDR算法与伪平面技术的井下人员定位方法研究. 西安科技大学学报. 2024(03): 587-596 .
![]() | |
3. |
王泰基. 基于生成对抗网络的井下人员步长估计方法. 工矿自动化. 2024(06): 103-111 .
![]() | |
4. |
万蓬勃,李学青,汤运启. 一种改进的行人航迹推算算法研究. 电子测量技术. 2024(11): 69-77 .
![]() | |
5. |
李海川,贺星亮,贾仟国,李利. 基于S3DD-YOLOv8n的矿工行为检测算法. 矿业安全与环保. 2024(05): 96-104 .
![]() | |
6. |
崔丽珍,张清宇,郭倩倩,马宝良. 基于CNN-LSTM的井下人员行为模式识别模型. 无线电工程. 2023(06): 1375-1381 .
![]() | |
7. |
卫庆芳,陈勇,薛文军,马文秀,裴科科. 基于室内定位的改进PDR算法研究. 火力与指挥控制. 2023(04): 102-107 .
![]() | |
8. |
郭倩倩,崔丽珍,杨勇,赫佳星,史明泉. 基于LSTM个性化步长估计的井下人员精准定位PDR算法. 工矿自动化. 2022(01): 33-39 .
![]() | |
9. |
李自森,毛馨凯,王洪亮. 选煤厂智能照明控制. 工矿自动化. 2022(S1): 124-125+132 .
![]() |