TANG Jun, LI Jingzhao, SHI Qing, et al. Real time detection of foreign objects in belt conveyors based on Faster-YOLOv7[J]. Journal of Mine Automation,2023,49(11):46-52, 66. DOI: 10.13272/j.issn.1671-251x.2023020037
Citation: TANG Jun, LI Jingzhao, SHI Qing, et al. Real time detection of foreign objects in belt conveyors based on Faster-YOLOv7[J]. Journal of Mine Automation,2023,49(11):46-52, 66. DOI: 10.13272/j.issn.1671-251x.2023020037

Real time detection of foreign objects in belt conveyors based on Faster-YOLOv7

More Information
  • Received Date: February 12, 2023
  • Revised Date: November 04, 2023
  • Available Online: November 14, 2023
  • The object detection algorithm based on deep learning has good recognition performance in foreign object detection. But the model memory requirement is large and the detection speed is slow. The lightweight deep learning networks can significantly reduce model memory requirements and improve detection speed. But their detection precision is low in weak light environments underground. In order to solve the above problems, a real-time foreign object detection algorithm for belt conveyors based on Faster-YOLOv7 is proposed. By using the contrast limited adaptive histogram equalization (CLAHE) with limited contrast for image enhancement, the contrast of foreign objects in low light environments is improved. Lightweight design of the YOLOv7 backbone network based on Mobilenetv3 is carried out to reduce the computational and parameter load of the YOLOv7 model. By adding an effective channel attention mechanism, the method alleviates the problem of high-level feature information loss caused by a decrease in the number of feature channels. Alpha-IoU is used as the loss function to improve the precision of foreign object detection. The experimental results show the following points. ① The initial loss of Faster-YOLOv7 is 0.143, and the final stability is around 0.039. ② The detection speed of Faster-YOLOv7 can reach 42 frames/s, which is 17 and 20 frames/s higher than YOLOv5 and YOLOv7, respectively. Faster-YOLOv7 has a memory of 14 MiB, which is 29 and 57 MiB lower than YOLOv5 and YOLOv7, respectively. The detection accuracy reaches 91.3%, which is 8.8% higher than YOLOv5. ③Applying SSD, YOLOv5, lightweight YOLOv7, and Faster-YOLOv7 object detection algorithms to the coal conveying images and videos of underground belt conveyors in coal mines, it is found that SSD misses detection during video detection. YOLO series models effectively recognized the foreign objects to be tested, and Faster-YOLOv7 recognition results has a higher confidence level.
  • [1]
    任志玲,朱彦存. 改进CenterNet算法的煤矿皮带运输异物识别研究[J]. 控制工程,2023,30(4):703-711.

    REN Zhiling,ZHU Yancun. Research on foreign object detection of coal mine belt transportation with improved CenterNet algorithm[J]. Control Engineering of China,2023,30(4):703-711.
    [2]
    杜京义,陈瑞,郝乐,等. 煤矿带式输送机异物检测[J]. 工矿自动化,2021,47(8):77-83. DOI: 10.13272/j.issn.1671-251x.2021040026

    DU Jingyi,CHEN Rui,HAO Le,et al. Coal mine belt conveyor foreign object detection[J]. Industry and Mine Automation,2021,47(8):77-83. DOI: 10.13272/j.issn.1671-251x.2021040026
    [3]
    杜紫薇,周恒,李承阳,等. 面向深度卷积神经网络的小目标检测算法综述[J]. 计算机科学,2022,49(12):205-218. DOI: 10.11896/jsjkx.220500260

    DU Ziwei,ZHOU Heng,LI Chengyang,et al. Small object detection based on deep convolutional neural networks:a review[J]. Computer Science,2022,49(12):205-218. DOI: 10.11896/jsjkx.220500260
    [4]
    吴守鹏,丁恩杰,俞啸. 基于改进FPN的输送带异物识别方法[J]. 煤矿安全,2019,50(12):127-130.

    WU Shoupeng,DING Enjie,YU Xiao. Foreign body identificati on of belt based on improved FPN[J]. Safety in Coal Mines,2019,50(12):127-130.
    [5]
    郝帅,张旭,马旭,等. 基于CBAM−YOLOv5的煤矿输送带异物检测[J]. 煤炭学报,2022,47(11):4147-4156.

    HAO Shuai,ZHANG Xu,MA Xu,et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society,2022,47(11):4147-4156.
    [6]
    任国强,韩洪勇,李成江,等. 基于FastYOLOv3算法的煤矿胶带运输异物检测[J]. 工矿自动化,2021,47(12):128-133.

    REN Guoqiang,HAN Hongyong,LI Chengjiang,et al. Foreign object detection in coal mine belt transportation based on FastYOLOv3 algorithm[J]. Industry and Mine Automation,2021,47(12):128-133.
    [7]
    陈永,卢晨涛,王镇. 基于轻量级网络的铁路感兴趣区域异物侵限检测[J]. 吉林大学学报(工学版),2022,52(10):2405-2418.

    CHEN Yong,LU Chentao,WANG Zhen. Detection of foreign object intrusion in railway region of interest based on lightweight network[J]. Journal of Jilin University(Engineering and Technology Edition),2022,52(10):2405-2418.
    [8]
    杨锦辉,李鸿,杜芸彦,等. 基于改进YOLOv5s的轻量化目标检测算法[J]. 电光与控制,2023,30(2):24-30. DOI: 10.3969/j.issn.1671-637X.2023.02.005

    YANG Jinhui,LI Hong,DU Yunyan,et al. A lightweight object detection algorithm based on improved YOLOv5s[J]. Electronics Optics & Control,2023,30(2):24-30. DOI: 10.3969/j.issn.1671-637X.2023.02.005
    [9]
    胡璟皓,高妍,张红娟,等. 基于深度学习的带式输送机非煤异物识别方法[J]. 工矿自动化,2021,47(6):57-62,90. DOI: 10.13272/j.issn.1671-251x.2021020041

    HU Jinghao,GAO Yan,ZHANG Hongjuan,et al. Research on the identification method of non-coal foreign object of belt conveyor based on deep learning[J]. Industry and Mine Automation,2021,47(6):57-62,90. DOI: 10.13272/j.issn.1671-251x.2021020041
    [10]
    陈宇梁,董绍江,孙世政,等. 改进YOLOv5的弱光水下生物目标检测算法[J/OL]. 北京航空航天大学学报:1-13[2023-01-11]. https://doi.org/10.13700/j.bh.1001-5965.2022.0322.

    CHEN Yuliang,DONG Shaojiang,SUN Shizheng,et al. Improved YOLOv5 low light underwater biological target detection algorithm [J/OL]. Journal of Beijing University of Aeronautics and Astronautics:1-13[2023-01-11]. https://doi.org/10.13700/j.bh.1001-5965.2022.0322.
    [11]
    WANG C Y,BOCHKOVSKIY Z,LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Vancouver,2023:7464-7475.
    [12]
    戚玲珑,高建瓴. 基于改进YOLOv7的小目标检测[J]. 计算机工程,2023,49(1):41-48.

    QI Linglong,GAO Jianling. Small object detection based on improved YOLOv7[J]. Computer Engineering,2023,49(1):41-48.
    [13]
    成浪,敬超. 基于改进YOLOv7的X线图像旋转目标检测[J]. 图学学报,2023,44(2):324-334.

    CHENG Lang,JING Chao. X-ray image rotating object detection based on improved YOLOv7[J]. Journal of Graphics,2023,44(2):324-334.
    [14]
    DING Xiaohan,ZHANG Xiangyu,MA Ningning,et al. RepVGG:making VGG-style convnets great again[J]. Computer Vision and Pattern Recognition,2021. DOI: 10.1109/CVPR46437.2021.01352.
    [15]
    赵元龙,单玉刚,袁杰. 改进YOLOv7与DeepSORT的佩戴口罩行人跟踪[J]. 计算机工程与应用,2023,59(6):221-230. DOI: 10.3778/j.issn.1002-8331.2210-0479

    ZHAO Yuanlong,SHAN Yugang,YUAN Jie. Wearing mask pedestrian tracking based on improved YOLOv7 and DeepSORT[J]. Computer Engineering and Applications,2023,59(6):221-230. DOI: 10.3778/j.issn.1002-8331.2210-0479
    [16]
    辛世澳,葛海波,袁昊,等. 改进YOLOv7的轻量化水下目标检测算法[J/OL]. 计算机工程与应用:1-16[2023-01-30]. http://kns.cnki.net/kcms/detail/11.2127.TP.20231025.1722.024.html.

    XIN Shi'ao,GE Haibo,YUAN Hao,et al. lmproved YOLOv7's lightweight underwater target detection algorithm [J/OL]. Computer Engineering and Applications:1-16[2023-01-30]. http://kns.cnki.net/kcms/detail/11.2127.TP.20231025.1722.024.html.
    [17]
    HOWARD A,SANDLER M,CHU G,et al. Searching for MobileNetV3[C]. IEEE/CVF International Conference on Computer Vision (ICCV),Seoul,2019:1314-1324.
    [18]
    WANG Qilong,WU Banggu,ZHU Pengfei,et al. ECA-Net:efficient channel attention for deep convolutional neural networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:11534-11542.
    [19]
    苑朝,赵亚冬,张耀,等. 基于YOLO轻量化的多模态行人检测算法[J/OL]. 图学学报:1-12[2023-01-30]. http://kns.cnki.net/kcms/detail/10.1034.T.20231026.1644.002.html.

    YUAN Chao,ZHAO Yadong,ZHANG Yao,et al. Base on YOLO lightweight multi-modal pedestrian detection algorithm [J/OL]. Journal of Graphics:1-12[2023-01-30]. http://kns.cnki.net/kcms/detail/10.1034.T.20231026.1644.002.html.
    [20]
    王灏文,朴燕,王鈅,等. 改进YOLOv7的无明火森林烟雾检测算法[J/OL]. 计算机工程与应用:1-11[2023-01-30]. http://kns.cnki.net/kcms/detail/11.2127.TP.20231025.1637.020.html.

    WANG Haowen,PU Yan,WANG Yue,et al. Forest smoke detection method without open flames based on improved YOLOv7 [J/OL]. Computer Engineering and Applications:1-11[2023-01-30]. http://kns.cnki.net/kcms/detail/11.2127.TP.20231025.1637.020.html.
    [21]
    高新阳,魏晟,温志庆,等. 改进YOLOv5轻量级网络的柑橘检测方法[J]. 计算机工程与应用,2023,59(11):212-221.

    GAO Xinyang,WEI Sheng,WEN Zhiqing,et al. Citrus detection method based on improved YOLOv5 lightweight network[J]. Computer Engineering and Applications,2023,59(11):212-221.
  • Related Articles

    [1]ZHANG Lihui. Mask occlusion face recognition algorithm based on neural network model with optimized loss function[J]. Journal of Mine Automation, 2024, 50(S1): 15-20.
    [2]TAN Donggui, YUAN Yiping, FAN Panpan. Health status evaluation of CNN-GRU mine motor based on adaptive multi-scale attention mechanism[J]. Journal of Mine Automation, 2024, 50(2): 138-146. DOI: 10.13272/j.issn.1671-251x.2023110024
    [3]TU Yihan, WANG Puqing. Mine image enhancement method based on multi-scale local histogram equalization[J]. Journal of Mine Automation, 2023, 49(8): 94-99. DOI: 10.13272/j.issn.1671-251x.2023010015
    [4]LI Chengcheng, MA Lisen, TIAN Yuan, JIA Yunhong, JIA Qu, TIAN Weiqin, ZHANG Kai. An onboard video stabilization algorithm for roadheader based on CLAHE and Kalman filter[J]. Journal of Mine Automation, 2023, 49(5): 66-73. DOI: 10.13272/j.issn.1671-251x.2022100002
    [5]GONG Yun, YANG Pangbin, JIE Xinyu. Underground image matching algorithm combining homomorphic filtering and histogram equalizatio[J]. Journal of Mine Automation, 2021, 47(10): 37-41. DOI: 10.13272/j.issn.1671-251x.2021070018
    [6]XU Zhi, LI Jingzhao, ZHANG Chuanjiang, YAO Lei, WANG Jiwei. Lightweight CNN and its application in coal mine intelligent video surveillance[J]. Journal of Mine Automation, 2020, 46(12): 13-19. DOI: 10.13272/j.issn.1671-251x.17674
    [7]MO Shupei, TANG Jin, DU Yongwan, CHEN Ming. Underground adaptive positioning algorithm based on SAPSO-BP neural network[J]. Journal of Mine Automation, 2019, 45(7): 80-85. DOI: 10.13272/j.issn.1671-251x.2019010066
    [8]ZHAO Ping-qiang, XU Ke-fei, WANG Xi-jing, GAO Li-li, LIU Hong-gang. Design of Equalization Charging System for LiFePO4 Power Battery of Mine-used Monorail[J]. Journal of Mine Automation, 2010, 36(6): 70-73.
    [9]WANG Hong-yuan, SHI Lian-min, ZHOU Yue, CHENG Qi-cai, YANG Xiao-ying. Method of Digital Image Processing Based on DSP and S-function and Its Implementatio[J]. Journal of Mine Automation, 2009, 35(3): 24-27.
  • Cited by

    Periodical cited type(12)

    1. 葛志刚,王来斌,宋子琦. 临涣煤矿八采区10煤层构造复杂程度评价. 河南科技. 2025(01): 37-43 .
    2. 李峰,贺延军,冯英,马锐,史康,郭晨. 延安芦村二号煤矿薄煤层构造与煤厚稳定性定量评价. 西北地质. 2025(02): 261-273 .
    3. 杨祎超,徐宏杰,刘会虎,卢宏伟,刘瑜,祝月,詹北淮. 芦岭煤矿10号煤层瓦斯赋存及其控制因素综合评价. 煤矿安全. 2024(02): 27-34 .
    4. 汪伟民,郝红俊,翟晓荣,程龙艺,汪蒙,庞瑶. 基于改进AHP-独立性权系数法的地质构造复杂程度定量评价. 煤炭技术. 2024(04): 119-124 .
    5. 兰天伟,王顺翔,张满仓,李柱,吴国强,房平,路凯翔,刘永豪,唐小富. 矿井断裂构造分形特征及其对冲击地压影响的研究. 工矿自动化. 2024(10): 112-119 . 本站查看
    6. 郭强,成文举,杨廷军,王印,唐汝倩,张呈伟,徐国梁,尹会永. 基于博弈论组合赋权的断层定量评价模型及应用. 煤矿安全. 2023(06): 199-206 .
    7. 施龙青,赵威,刘天浩,翟培合,王钊,吕昌兴. 煤矿井田构造复杂程度定量评价研究. 煤炭工程. 2022(08): 142-148 .
    8. 蔡益栋,高国森,刘大锰,邱峰. 鄂尔多斯盆地东缘临兴中区煤系气富集地质条件及成藏模式. 天然气工业. 2022(11): 25-36 .
    9. 左林霄,高鹏,冯栋,王晓玮,侯恩科. 基于AHP-熵权法耦合方法的地质构造复杂程度定量评价. 煤炭科学技术. 2022(11): 140-149 .
    10. 霍高普,薛喜成. 象山煤矿3号煤层地质构造复杂程度定量评价. 中国煤炭地质. 2022(12): 1-6 .
    11. 冀前辉,郝世俊,王程,刘卫卫. 复合勘探技术在煤矿工作面水害防治中的应用. 工矿自动化. 2020(03): 79-83 . 本站查看
    12. 曹代勇,占文锋,李焕同,李小明,刘德民,魏迎春. 中国煤矿动力地质灾害的构造背景与风险区带划分. 煤炭学报. 2020(07): 2376-2388 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (430) PDF downloads (112) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return