Citation: | TANG Jun, LI Jingzhao, SHI Qing, et al. Real time detection of foreign objects in belt conveyors based on Faster-YOLOv7[J]. Journal of Mine Automation,2023,49(11):46-52, 66. DOI: 10.13272/j.issn.1671-251x.2023020037 |
[1] |
任志玲,朱彦存. 改进CenterNet算法的煤矿皮带运输异物识别研究[J]. 控制工程,2023,30(4):703-711.
REN Zhiling,ZHU Yancun. Research on foreign object detection of coal mine belt transportation with improved CenterNet algorithm[J]. Control Engineering of China,2023,30(4):703-711.
|
[2] |
杜京义,陈瑞,郝乐,等. 煤矿带式输送机异物检测[J]. 工矿自动化,2021,47(8):77-83. DOI: 10.13272/j.issn.1671-251x.2021040026
DU Jingyi,CHEN Rui,HAO Le,et al. Coal mine belt conveyor foreign object detection[J]. Industry and Mine Automation,2021,47(8):77-83. DOI: 10.13272/j.issn.1671-251x.2021040026
|
[3] |
杜紫薇,周恒,李承阳,等. 面向深度卷积神经网络的小目标检测算法综述[J]. 计算机科学,2022,49(12):205-218. DOI: 10.11896/jsjkx.220500260
DU Ziwei,ZHOU Heng,LI Chengyang,et al. Small object detection based on deep convolutional neural networks:a review[J]. Computer Science,2022,49(12):205-218. DOI: 10.11896/jsjkx.220500260
|
[4] |
吴守鹏,丁恩杰,俞啸. 基于改进FPN的输送带异物识别方法[J]. 煤矿安全,2019,50(12):127-130.
WU Shoupeng,DING Enjie,YU Xiao. Foreign body identificati on of belt based on improved FPN[J]. Safety in Coal Mines,2019,50(12):127-130.
|
[5] |
郝帅,张旭,马旭,等. 基于CBAM−YOLOv5的煤矿输送带异物检测[J]. 煤炭学报,2022,47(11):4147-4156.
HAO Shuai,ZHANG Xu,MA Xu,et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society,2022,47(11):4147-4156.
|
[6] |
任国强,韩洪勇,李成江,等. 基于FastYOLOv3算法的煤矿胶带运输异物检测[J]. 工矿自动化,2021,47(12):128-133.
REN Guoqiang,HAN Hongyong,LI Chengjiang,et al. Foreign object detection in coal mine belt transportation based on FastYOLOv3 algorithm[J]. Industry and Mine Automation,2021,47(12):128-133.
|
[7] |
陈永,卢晨涛,王镇. 基于轻量级网络的铁路感兴趣区域异物侵限检测[J]. 吉林大学学报(工学版),2022,52(10):2405-2418.
CHEN Yong,LU Chentao,WANG Zhen. Detection of foreign object intrusion in railway region of interest based on lightweight network[J]. Journal of Jilin University(Engineering and Technology Edition),2022,52(10):2405-2418.
|
[8] |
杨锦辉,李鸿,杜芸彦,等. 基于改进YOLOv5s的轻量化目标检测算法[J]. 电光与控制,2023,30(2):24-30. DOI: 10.3969/j.issn.1671-637X.2023.02.005
YANG Jinhui,LI Hong,DU Yunyan,et al. A lightweight object detection algorithm based on improved YOLOv5s[J]. Electronics Optics & Control,2023,30(2):24-30. DOI: 10.3969/j.issn.1671-637X.2023.02.005
|
[9] |
胡璟皓,高妍,张红娟,等. 基于深度学习的带式输送机非煤异物识别方法[J]. 工矿自动化,2021,47(6):57-62,90. DOI: 10.13272/j.issn.1671-251x.2021020041
HU Jinghao,GAO Yan,ZHANG Hongjuan,et al. Research on the identification method of non-coal foreign object of belt conveyor based on deep learning[J]. Industry and Mine Automation,2021,47(6):57-62,90. DOI: 10.13272/j.issn.1671-251x.2021020041
|
[10] |
陈宇梁,董绍江,孙世政,等. 改进YOLOv5的弱光水下生物目标检测算法[J/OL]. 北京航空航天大学学报:1-13[2023-01-11]. https://doi.org/10.13700/j.bh.1001-5965.2022.0322.
CHEN Yuliang,DONG Shaojiang,SUN Shizheng,et al. Improved YOLOv5 low light underwater biological target detection algorithm [J/OL]. Journal of Beijing University of Aeronautics and Astronautics:1-13[2023-01-11]. https://doi.org/10.13700/j.bh.1001-5965.2022.0322.
|
[11] |
WANG C Y,BOCHKOVSKIY Z,LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Vancouver,2023:7464-7475.
|
[12] |
戚玲珑,高建瓴. 基于改进YOLOv7的小目标检测[J]. 计算机工程,2023,49(1):41-48.
QI Linglong,GAO Jianling. Small object detection based on improved YOLOv7[J]. Computer Engineering,2023,49(1):41-48.
|
[13] |
成浪,敬超. 基于改进YOLOv7的X线图像旋转目标检测[J]. 图学学报,2023,44(2):324-334.
CHENG Lang,JING Chao. X-ray image rotating object detection based on improved YOLOv7[J]. Journal of Graphics,2023,44(2):324-334.
|
[14] |
DING Xiaohan,ZHANG Xiangyu,MA Ningning,et al. RepVGG:making VGG-style convnets great again[J]. Computer Vision and Pattern Recognition,2021. DOI: 10.1109/CVPR46437.2021.01352.
|
[15] |
赵元龙,单玉刚,袁杰. 改进YOLOv7与DeepSORT的佩戴口罩行人跟踪[J]. 计算机工程与应用,2023,59(6):221-230. DOI: 10.3778/j.issn.1002-8331.2210-0479
ZHAO Yuanlong,SHAN Yugang,YUAN Jie. Wearing mask pedestrian tracking based on improved YOLOv7 and DeepSORT[J]. Computer Engineering and Applications,2023,59(6):221-230. DOI: 10.3778/j.issn.1002-8331.2210-0479
|
[16] |
辛世澳,葛海波,袁昊,等. 改进YOLOv7的轻量化水下目标检测算法[J/OL]. 计算机工程与应用:1-16[2023-01-30]. http://kns.cnki.net/kcms/detail/11.2127.TP.20231025.1722.024.html.
XIN Shi'ao,GE Haibo,YUAN Hao,et al. lmproved YOLOv7's lightweight underwater target detection algorithm [J/OL]. Computer Engineering and Applications:1-16[2023-01-30]. http://kns.cnki.net/kcms/detail/11.2127.TP.20231025.1722.024.html.
|
[17] |
HOWARD A,SANDLER M,CHU G,et al. Searching for MobileNetV3[C]. IEEE/CVF International Conference on Computer Vision (ICCV),Seoul,2019:1314-1324.
|
[18] |
WANG Qilong,WU Banggu,ZHU Pengfei,et al. ECA-Net:efficient channel attention for deep convolutional neural networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:11534-11542.
|
[19] |
苑朝,赵亚冬,张耀,等. 基于YOLO轻量化的多模态行人检测算法[J/OL]. 图学学报:1-12[2023-01-30]. http://kns.cnki.net/kcms/detail/10.1034.T.20231026.1644.002.html.
YUAN Chao,ZHAO Yadong,ZHANG Yao,et al. Base on YOLO lightweight multi-modal pedestrian detection algorithm [J/OL]. Journal of Graphics:1-12[2023-01-30]. http://kns.cnki.net/kcms/detail/10.1034.T.20231026.1644.002.html.
|
[20] |
王灏文,朴燕,王鈅,等. 改进YOLOv7的无明火森林烟雾检测算法[J/OL]. 计算机工程与应用:1-11[2023-01-30]. http://kns.cnki.net/kcms/detail/11.2127.TP.20231025.1637.020.html.
WANG Haowen,PU Yan,WANG Yue,et al. Forest smoke detection method without open flames based on improved YOLOv7 [J/OL]. Computer Engineering and Applications:1-11[2023-01-30]. http://kns.cnki.net/kcms/detail/11.2127.TP.20231025.1637.020.html.
|
[21] |
高新阳,魏晟,温志庆,等. 改进YOLOv5轻量级网络的柑橘检测方法[J]. 计算机工程与应用,2023,59(11):212-221.
GAO Xinyang,WEI Sheng,WEN Zhiqing,et al. Citrus detection method based on improved YOLOv5 lightweight network[J]. Computer Engineering and Applications,2023,59(11):212-221.
|
1. |
葛志刚,王来斌,宋子琦. 临涣煤矿八采区10煤层构造复杂程度评价. 河南科技. 2025(01): 37-43 .
![]() | |
2. |
李峰,贺延军,冯英,马锐,史康,郭晨. 延安芦村二号煤矿薄煤层构造与煤厚稳定性定量评价. 西北地质. 2025(02): 261-273 .
![]() | |
3. |
杨祎超,徐宏杰,刘会虎,卢宏伟,刘瑜,祝月,詹北淮. 芦岭煤矿10号煤层瓦斯赋存及其控制因素综合评价. 煤矿安全. 2024(02): 27-34 .
![]() | |
4. |
汪伟民,郝红俊,翟晓荣,程龙艺,汪蒙,庞瑶. 基于改进AHP-独立性权系数法的地质构造复杂程度定量评价. 煤炭技术. 2024(04): 119-124 .
![]() | |
5. |
兰天伟,王顺翔,张满仓,李柱,吴国强,房平,路凯翔,刘永豪,唐小富. 矿井断裂构造分形特征及其对冲击地压影响的研究. 工矿自动化. 2024(10): 112-119 .
![]() | |
6. |
郭强,成文举,杨廷军,王印,唐汝倩,张呈伟,徐国梁,尹会永. 基于博弈论组合赋权的断层定量评价模型及应用. 煤矿安全. 2023(06): 199-206 .
![]() | |
7. |
施龙青,赵威,刘天浩,翟培合,王钊,吕昌兴. 煤矿井田构造复杂程度定量评价研究. 煤炭工程. 2022(08): 142-148 .
![]() | |
8. |
蔡益栋,高国森,刘大锰,邱峰. 鄂尔多斯盆地东缘临兴中区煤系气富集地质条件及成藏模式. 天然气工业. 2022(11): 25-36 .
![]() | |
9. |
左林霄,高鹏,冯栋,王晓玮,侯恩科. 基于AHP-熵权法耦合方法的地质构造复杂程度定量评价. 煤炭科学技术. 2022(11): 140-149 .
![]() | |
10. |
霍高普,薛喜成. 象山煤矿3号煤层地质构造复杂程度定量评价. 中国煤炭地质. 2022(12): 1-6 .
![]() | |
11. |
冀前辉,郝世俊,王程,刘卫卫. 复合勘探技术在煤矿工作面水害防治中的应用. 工矿自动化. 2020(03): 79-83 .
![]() | |
12. |
曹代勇,占文锋,李焕同,李小明,刘德民,魏迎春. 中国煤矿动力地质灾害的构造背景与风险区带划分. 煤炭学报. 2020(07): 2376-2388 .
![]() |