CHEN Fabing, WU Hongjun, CUI Baoge, et al. Analysis and optimization method of monitoring capability of coal mine microseismic monitoring network[J]. Journal of Mine Automation,2022,48(7):96-104. DOI: 10.13272/j.issn.1671-251x.2022020048
Citation: CHEN Fabing, WU Hongjun, CUI Baoge, et al. Analysis and optimization method of monitoring capability of coal mine microseismic monitoring network[J]. Journal of Mine Automation,2022,48(7):96-104. DOI: 10.13272/j.issn.1671-251x.2022020048

Analysis and optimization method of monitoring capability of coal mine microseismic monitoring network

More Information
  • Received Date: February 23, 2022
  • Revised Date: July 08, 2022
  • Available Online: April 13, 2022
  • The monitoring capability of microseismic monitoring network depends on many factors, such as network layout, velocity model, seismic phase reading error, regional anomaly of travel time, positioning algorithm, equipment running state and environmental noise. Among these factors, the network layout can be artificially optimized at present stage. In order to effectively evaluate the monitoring capacity of microseismic monitoring network and optimize the network layout, the analysis and optimization method of monitoring capacity of coal mine microseismic monitoring network is proposed. This study analyzes four factors which have the greatest and most direct influence on the monitoring capability of the microseismic monitoring network. The four factors are the number of effective waveforms, the maximum gap angle, the near-station epicenter distance and the height difference between stations. It is pointed out that the number of effective waveforms, the near-station epicenter distance and the height difference between stations play a decisive role in the error of hypocenter depth solution. The number of effective waveforms and the maximum gap angle play a decisive role in the precision of epicenter positioning. According to the situation of the existing network and the working face, the distribution cloud pictures of the four factors are obtained. The monitoring capability of the microseismic network is evaluated item by item through the distribution cloud pictures of the four factors. The new network arrangement scheme is obtained through optimization of the evaluation result. The positioning error and sensitivity of the new scheme are analyzed. The epicenter positioning error, hypocenter positioning error and regional sensitivity of the whole mine are obtained. The second evaluation of the new scheme is carried out. If the secondary evaluation results meet the requirements, the new scheme can be regarded as the best network layout scheme. If the secondary evaluation results do not meet the requirements, the four factors sub item evaluation will be carried out again and the scheme will be optimized until the requirements are met. The field test results show that after the proposed method is used to optimize the microseismic monitoring network of 5307 working face in Tangkou Coal Mine, the average value of blasting hypocenter positioning error is reduced from 59.2 m to 37.2 m. The maximum value of positioning error is reduced to less than 100 m, and the blasting events with error less than 50 m account for 69.0% of the total. The results show that the proposed method can effectively improve the microseismic positioning precision and optimize the monitoring capability of the network.
  • [1]
    姜福兴,杨淑华,成云海,等. 煤矿冲击地压的微地震监测研究[J]. 地球物理学报,2006,49(5):1511-1516. DOI: 10.3321/j.issn:0001-5733.2006.05.032

    JIANG Fuxing,YANG Shuhua,CHENG Yunhai,et al. A study on microseismic monitoring of rock burst in coal mine[J]. Chinese Journal of Geophysics,2006,49(5):1511-1516. DOI: 10.3321/j.issn:0001-5733.2006.05.032
    [2]
    徐奴文,唐春安,沙椿,等. 锦屏一级水电站左岸边坡微震监测系统及其工程应用[J]. 岩石力学与工程学报,2010,29(5):915-925.

    XU Nuwen,TANG Chun'an,SHA Chun,et al. Microseismic monitoring system establishment and its engineering applications to left bank slope of Jinping I Hydropower Station[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(5):915-925.
    [3]
    巩思园,窦林名,曹安业,等. 煤矿微震监测台网优化布设研究[J]. 地球物理学报,2010,53(2):457-465. DOI: 10.3969/j.issn.0001-5733.2010.02.025

    GONG Siyuan,DOU Linming,CAO Anye,et al. Study on optimal configuration of seismological observation network for coal mine[J]. Chinese Journal of Geophysics,2010,53(2):457-465. DOI: 10.3969/j.issn.0001-5733.2010.02.025
    [4]
    唐礼忠,杨承祥,潘长良. 大规模深井开采微震监测系统站网布置优化[J]. 岩石力学与工程学报,2006,25(10):2036-2042. DOI: 10.3321/j.issn:1000-6915.2006.10.014

    TANG Lizhong,YANG Chengxiang,PAN Changliang. Optimization of microseismic monitoring network for large-scale deep well mining[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(10):2036-2042. DOI: 10.3321/j.issn:1000-6915.2006.10.014
    [5]
    邱宇,蒋长胜,司政亚. 地震监测台网优化布局技术方法综述[J]. 地球物理学进展,2020,35(3):866-873. DOI: 10.6038/pg2020DD0069

    QIU Yu,JIANG Changsheng,SI Zhengya. Summary of technical methods for optimizing layout of seismic monitoring network[J]. Progress in Geophysics,2020,35(3):866-873. DOI: 10.6038/pg2020DD0069
    [6]
    李楠,王恩元,李保林,等. 传感器台网布设对震源定位的影响规律及机制研究[J]. 中国矿业大学学报,2017,46(2):229-236.

    LI Nan,WANG Enyuan,LI Baolin,et al. Research on the influence law and mechanisms of sensors network layouts for the source location[J]. Journal of China University of Mining & Technology,2017,46(2):229-236.
    [7]
    曹英莉,刘玉桥,邓红卫. 矿山微震监测台网多目标优化决策模型研究及应用[J]. 矿业研究与开发,2021,41(11):34-43.

    CAO Yingli,LIU Yuqiao,DENG Hongwei. Research and application on multi-objective optimization decision model for mine microseismic monitoring network[J]. Mining Research and Development,2021,41(11):34-43.
    [8]
    崔宇,李夕兵,董陇军,等. 玲珑金矿微震监测台网布设优化[J]. 黄金科学技术,2019,27(3):417-424.

    CUI Yu,LI Xibing,DONG Longjun,et al. Optimization of micro-seismic monitoring network layout in Linglong Gold Mine[J]. Gold Science and Technology,2019,27(3):417-424.
    [9]
    梁姗姗,邹立晔,赵博,等. 中国测震台网地震监测能力初步分析[J]. 地震地磁观测与研究,2021,42(6):68-75. DOI: 10.3969/j.issn.1003-3246.2021.06.010

    LIANG Shanshan,ZOU Liye,ZHAO Bo,et al. Preliminary analysis of seismic monitoring capability of China Seismic Network[J]. Seismological and Geomagnetic Observation and Research,2021,42(6):68-75. DOI: 10.3969/j.issn.1003-3246.2021.06.010
    [10]
    胡先明,邵玉平. 水库地震台网监测能力计算方法−基于G−R关系式[J]. 地震地质,2010,32(4):647-655. DOI: 10.3969/j.issn.0253-4967.2010.04.012

    HU Xianming,SHAO Yuping. Calculation method of monitoring capability of reservoir seismic network:based on G-R relationship[J]. Seismology and Geology,2010,32(4):647-655. DOI: 10.3969/j.issn.0253-4967.2010.04.012
    [11]
    徐刚,陈法兵,张振金,等. 井上下微震联合监测震源垂直定位精度优化研究[J]. 煤炭科学技术,2020,48(2):80-88.

    XU Gang,CHEN Fabing,ZHANG Zhenjin,et al. Study on optimization of vertical location accuracy of seismic source based on joint monitoring of surface and underground micro-seismic monitoring[J]. Coal Science and Technology,2020,48(2):80-88.
    [12]
    蔡永顺,张龙,张达,等. 基于Sigma−Optimal方法的微震监测台网设计及优化[J]. 有色金属(矿山部分),2019,71(1):79-84. DOI: 10.3969/j.issn.1671-4172.2019.01.016

    CAI Yongshun,ZHANG Long,ZHANG Da,et al. Design and optimization of microseismic monitoring network based on Sigma-Optimal method[J]. Nonferrous Metals(Mining Section),2019,71(1):79-84. DOI: 10.3969/j.issn.1671-4172.2019.01.016
    [13]
    陈法兵. 矿山微震定位子台网的分布对定位精度的影响[J]. 煤矿开采,2016,21(4):107-114.

    CHEN Fabing. Influence of mine microseism location sub network distribution to positioning precision[J]. Coal Mining Technology,2016,21(4):107-114.
  • Related Articles

    [1]LIU Hai, WANG Qiyao, GAO Peng, WANG Xinyan, FENG Xingyu, CUI Hongzhong, GAO Pengfei. Design of terahertz metasurface methane sensor based on bound states in the continuum[J]. Journal of Mine Automation, 2025, 51(2): 48-56. DOI: 10.13272/j.issn.1671-251x.18220
    [2]WEI Chunxian, LI Tao, LIAN Changjin. The application of time sensitive network in coal mine[J]. Journal of Mine Automation, 2024, 50(S1): 65-68,99.
    [3]LIU Hai, ZHOU Tong, CHEN Cong, GAO Peng, DAI Yaowei, WANG Xiaolin, DUAN Senhao, GAO Zongyang. Design of all dielectric metasurface methane sensor based on Fano resonance[J]. Journal of Mine Automation, 2023, 49(9): 106-114. DOI: 10.13272/j.issn.1671-251x.18108
    [4]SONG Haoming, HUANG Yourui, CHEN Zhenping, XU Shanyong, ZHANG Chao. Distributed accurate time synchronization algorithm for underground coal mine time-sensitive network[J]. Journal of Mine Automation, 2021, 47(4): 51-56. DOI: 10.13272/j.issn.1671-251x.2020090008
    [5]LI Yue, CHEN Qing, DING Enjie, CHENG Long. Far-field seismic source positioning method based on improved GA algorithm[J]. Journal of Mine Automation, 2018, 44(2): 84-89. DOI: 10.13272/j.issn.1671-251x.2017090042
    [6]CUI Chuanbo, JIANG Shuguang, WANG Kai, SHAO Hao, WU Zhenyan. Adjustment of mine air volume based on air volume dispatchable model[J]. Journal of Mine Automation, 2016, 42(2): 39-43. DOI: 10.13272/j.issn.1671-251x.2016.02.010
    [7]YANG Ren-di~, ZHANG Yan-li~. Design of Intelligent Methane Concentration Detector[J]. Journal of Mine Automation, 2009, 35(11): 69-72.
    [8]LU Qing-gang, LE Xiao-rong. Sensitive Overload Protection of Motor Based on Thermal Model[J]. Journal of Mine Automation, 2009, 35(6): 46-49.
    [9]LIU Zhi-cun~, SUN Lin-feng~. Study on Automatic Adjustment of Zero and Correction of Sensitivity of Mine Intelligent Methane Sensor[J]. Journal of Mine Automation, 2005, 31(3): 4-6.
    [10]WANG Yu-mei, ZHANG Ying-qi, AI Yong-le. The Way to Improve the Measurement Sensitivity of Cross Breakagy Prediction Device for Strong Transportation Belt[J]. Journal of Mine Automation, 1998, 24(4): 51-53.
  • Cited by

    Periodical cited type(8)

    1. 张玉涛,路旭,李亚清,张园勃,车博. 低甲烷气氛下褐煤的低温氧化特性研究. 安全与环境学报. 2024(02): 517-524 .
    2. 王斌,贾澎涛,郭风景,孙刘咏,林开义. 基于多特征融合的煤自燃温度深度预测模型. 中国矿业. 2024(02): 84-90 .
    3. 田富超,贾东旭,陈明义,梁运涛,朱红青,张同浩. 采空区复合灾害环境下含瓦斯煤自燃特征研究进展. 煤炭学报. 2024(06): 2711-2727 .
    4. 叶正亮,龚选平,尚博,胡冕. 煤自燃全过程精准预测预报指标体系研究与应用. 矿业研究与开发. 2023(09): 141-145 .
    5. 贾澎涛,林开义,郭风景. 基于PSO-SRU深度神经网络的煤自燃温度预测模型. 工矿自动化. 2022(04): 105-113 . 本站查看
    6. 董轩萌,郭立稳,张少华,董宪伟,王福生. 氧化煤阻化性能的FTIR研究. 工业安全与环保. 2021(07): 34-39 .
    7. 骆大勇,刘振. 许疃煤矿煤炭自燃指标气体优选与应用. 矿业安全与环保. 2021(05): 69-74 .
    8. 刘宝,穆坤,叶飞,汪帆,王静婷. 基于相关向量机的煤自燃预测方法. 工矿自动化. 2020(09): 104-108 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (258) PDF downloads (37) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return