XU Jia, CHEN Junzhi, LIU Chenyu, WANG Jiaxin, LONG Gang, LI Chunyi. Application research of DHNN model in prediction of classification of rockburst intensity[J]. Journal of Mine Automation, 2018, 44(1): 84-88. DOI: 10.13272/j.issn.1671-251x.2017050027
Citation: XU Jia, CHEN Junzhi, LIU Chenyu, WANG Jiaxin, LONG Gang, LI Chunyi. Application research of DHNN model in prediction of classification of rockburst intensity[J]. Journal of Mine Automation, 2018, 44(1): 84-88. DOI: 10.13272/j.issn.1671-251x.2017050027

Application research of DHNN model in prediction of classification of rockburst intensity

More Information
  • In view of problems of randomness and subjectivity in determining weight of existing rockburst prediction methods,a discrete Hopfield neural network (DHNN) model for prediction of classification of rockburst intensity was proposed。The model selects stress coefficient, rockbrittleness coefficient and elastic energy index as evaluation index, divides rockburst grade into 4 stages, such as strong rockburst, medium rockburst, weak rockburst and no rockburst, then encodes them. The model need't normalize sample data with simpler encoding ,lesser iterations of network and better associative memory ability, only be converted to "1" and "-1" of the two value model, therefore, the classification prediction of rockburst intensity is more scientific and reasonable. The model can provide a new way for classification prediction of rockburst intensity in deep underground engineering. The prediction results of typical rockburst engineering examples prove the correctness of the model.
  • Related Articles

    [1]LIU Hai, WANG Qiyao, GAO Peng, WANG Xinyan, FENG Xingyu, CUI Hongzhong, GAO Pengfei. Design of terahertz metasurface methane sensor based on bound states in the continuum[J]. Journal of Mine Automation, 2025, 51(2): 48-56. DOI: 10.13272/j.issn.1671-251x.18220
    [2]WEI Chunxian, LI Tao, LIAN Changjin. The application of time sensitive network in coal mine[J]. Journal of Mine Automation, 2024, 50(S1): 65-68,99.
    [3]LIU Hai, ZHOU Tong, CHEN Cong, GAO Peng, DAI Yaowei, WANG Xiaolin, DUAN Senhao, GAO Zongyang. Design of all dielectric metasurface methane sensor based on Fano resonance[J]. Journal of Mine Automation, 2023, 49(9): 106-114. DOI: 10.13272/j.issn.1671-251x.18108
    [4]SONG Haoming, HUANG Yourui, CHEN Zhenping, XU Shanyong, ZHANG Chao. Distributed accurate time synchronization algorithm for underground coal mine time-sensitive network[J]. Journal of Mine Automation, 2021, 47(4): 51-56. DOI: 10.13272/j.issn.1671-251x.2020090008
    [5]LI Yue, CHEN Qing, DING Enjie, CHENG Long. Far-field seismic source positioning method based on improved GA algorithm[J]. Journal of Mine Automation, 2018, 44(2): 84-89. DOI: 10.13272/j.issn.1671-251x.2017090042
    [6]CUI Chuanbo, JIANG Shuguang, WANG Kai, SHAO Hao, WU Zhenyan. Adjustment of mine air volume based on air volume dispatchable model[J]. Journal of Mine Automation, 2016, 42(2): 39-43. DOI: 10.13272/j.issn.1671-251x.2016.02.010
    [7]YANG Ren-di~, ZHANG Yan-li~. Design of Intelligent Methane Concentration Detector[J]. Journal of Mine Automation, 2009, 35(11): 69-72.
    [8]LU Qing-gang, LE Xiao-rong. Sensitive Overload Protection of Motor Based on Thermal Model[J]. Journal of Mine Automation, 2009, 35(6): 46-49.
    [9]LIU Zhi-cun~, SUN Lin-feng~. Study on Automatic Adjustment of Zero and Correction of Sensitivity of Mine Intelligent Methane Sensor[J]. Journal of Mine Automation, 2005, 31(3): 4-6.
    [10]WANG Yu-mei, ZHANG Ying-qi, AI Yong-le. The Way to Improve the Measurement Sensitivity of Cross Breakagy Prediction Device for Strong Transportation Belt[J]. Journal of Mine Automation, 1998, 24(4): 51-53.
  • Cited by

    Periodical cited type(8)

    1. 张玉涛,路旭,李亚清,张园勃,车博. 低甲烷气氛下褐煤的低温氧化特性研究. 安全与环境学报. 2024(02): 517-524 .
    2. 王斌,贾澎涛,郭风景,孙刘咏,林开义. 基于多特征融合的煤自燃温度深度预测模型. 中国矿业. 2024(02): 84-90 .
    3. 田富超,贾东旭,陈明义,梁运涛,朱红青,张同浩. 采空区复合灾害环境下含瓦斯煤自燃特征研究进展. 煤炭学报. 2024(06): 2711-2727 .
    4. 叶正亮,龚选平,尚博,胡冕. 煤自燃全过程精准预测预报指标体系研究与应用. 矿业研究与开发. 2023(09): 141-145 .
    5. 贾澎涛,林开义,郭风景. 基于PSO-SRU深度神经网络的煤自燃温度预测模型. 工矿自动化. 2022(04): 105-113 . 本站查看
    6. 董轩萌,郭立稳,张少华,董宪伟,王福生. 氧化煤阻化性能的FTIR研究. 工业安全与环保. 2021(07): 34-39 .
    7. 骆大勇,刘振. 许疃煤矿煤炭自燃指标气体优选与应用. 矿业安全与环保. 2021(05): 69-74 .
    8. 刘宝,穆坤,叶飞,汪帆,王静婷. 基于相关向量机的煤自燃预测方法. 工矿自动化. 2020(09): 104-108 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (68) PDF downloads (9) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return