Abstract:
The existing coal and gangue segmentation and recognition technology has a large number of parameters, slow classification speed, and low recognition accuracy. The YOLOv5-seg model is prone to losing texture details and grayscale feature information on the image surface during up and down sampling operations, which reduces the efficiency of coal and gangue recognition. The YOLOv5-seg model overly focuses on global features during training, while neglecting the locally significant regions and features that are crucial for coal and gangue recognition. In order to solve the above problems, a coal and gangue segmentation and recognition method based on YOLOv5-SEDC model is proposed. Firstly, the method receives an image containing the shape information of coal and gangue, and uses the backbone network for feature extraction to generate a feature map. The method integrates the SENet module into the YOLOv5-seg model to preserve the texture details and grayscale features of coal and gangue surfaces, avoiding information loss caused by down sampling. The method adopts a dilated convolution strategy with different dilation rates instead of traditional convolution kernels. It not only expands the receptive field of the model, but also effectively reduces the number of model parameters. Finally, the segmentation detection head finely processes the fused features to achieve precise segmentation and recognition of coal and gangue. A coal and gangue image acquisition experimental platform is established at the actual coal and gangue sorting site of Daliuta Coal Mine. The ablation experiment results show that the accuracy of coal and gangue recognition of YOLOv5-SEDC model is improved by an average of 1.3% compared to YOLOv5-seg model. The parameter quantity is reduced by 0.7×106, and the detection speed is increased by 1.4 frames/s. The comparative experimental results show the following points. ① The accuracy of the YOLOv5-SEDC model is improved by 10.7%, 2.7%, 1.9% compared to the YOLOv3-tiny, YOLOv5-seg, and Mask-RCNN models, respectively, reaching 95.8%. ② The recall rate of the YOLOv5-SEDC model has increased by 3.0%, 2.1%, and 0.9% compared to the YOLOv3-tiny, YOLOv5-seg, and Mask-RCNN models, respectively, reaching 89.1%. ③ The mAP of the YOLOv5-SEDC model has increased by 6.4%, 6.3%, and 1.8% compared to the YOLOv3-tiny, YOLOv5-seg, and Mask-RCNN models, respectively, reaching 95.5%. ④ The F1 value of the YOLOv5-SEDC model has increased by 5.2%, 4.2%, 2.1% compared to the YOLOv3-tiny, YOLOv5-seg, and Mask-RCNN models, respectively, reaching 92.2%. ⑤ The detection speed of the YOLOv5-SEDC model is reduced by 1.9, 1.4, and 2.7 frames/s compared to the YOLOv3-tiny, YOLOv5-seg, and Mask-RCNN models, respectively. The visualization results show that the YOLOv5-SEDC model has higher detection accuracy for coal and gangue than the YOLOv5-seg and Mask-RCNN models. It indicates that the YOLOv5-SEDC model has good performance in coal gangue segmentation and recognition.
YANG Yang, LI Haixiong, HU Miaolong, et al. Coal and gangue segmentation and recognition method based on YOLOv5-SEDC model[J]. Journal of Mine Automation,2024,50(8):120-126. doi: 10.13272/j.issn.1671-251x.2024010078.