Citation: | ZHANG Wenhao, WU Juan, RUAN Kaiyi. Structural performance monitoring of mine hoist head sheave based on digital twins[J]. Journal of Mine Automation,2024,50(8):69-75. doi: 10.13272/j.issn.1671-251x.2024050086 |
[1] |
王琛,杨岸. 矿井提升机健康状态评估与预测系统研究[J]. 工矿自动化,2023,49(10):75-86.
WANG Chen,YANG An. Research on the health evaluation and prediction system for mine hoists[J]. Journal of Mine Automation,2023,49(10):75-86.
|
[2] |
滕虎. 提升机天轮状态监测与故障诊断研究[D]. 徐州:中国矿业大学,2023.
TENG Hu. Research on condition monitoring and fault diagnosis of hoist crown wheel[D]. Xuzhou:China University of Mining and Technology,2023.
|
[3] |
蔡晓炜,徐靖雯,杨朋霖,等. 提升机天轮状态监测与故障诊断系统[J]. 煤矿机械,2020,41(1):160-162.
CAI Xiaowei,XU Jingwen,YANG Penglin,et al. State monitoring and fault diagnosis system of hoist head sheave[J]. Coal Mine Machinery,2020,41(1):160-162.
|
[4] |
李瑶,涂兴子,吴娟,等. 基于线结构光的天轮偏摆监测机器视觉系统设计[J]. 煤炭工程,2020,52(5):178-182.
LI Yao,TU Xingzi,WU Juan,et al. Design of machine vision system for head sheave deflection monitoring based on linear structured light[J]. Coal Engineering,2020,52(5):178-182.
|
[5] |
姜雪,王超,王绍芝,等. 煤矿主井提升机滚筒与天轮故障监测系统[J]. 煤矿机械,2020,41(9):174-176.
JIANG Xue,WANG Chao,WANG Shaozhi,et al. Fault monitoring system for drum and sheave wheel of main shaft hoist in coal mine[J]. Coal Mine Machinery,2020,41(9):174-176.
|
[6] |
CONCETTA S,MARIO L,HERVE P,et al. Digital twin paradigm:a systematic literature review[J]. Computers in Industry,2021,130. DOI: 10.1016/J.COMPIND.2021.103469.
|
[7] |
LAI Xiaonan,WANG Shuo,GUO Zhenggang,et al. Designing a shape-performance integrated digital twin based on multiple models and dynamic data:a boom crane example[J]. Journal of Mechanical Design,2021,143(7). DOI: 10.1115/1.4049861.
|
[8] |
HE Wenbin,MAO Jianxu,SONG Kai,et al. Structural performance prediction based on the digital twin model:a battery bracket example[J]. Reliability Engineering and System Safety,2023,229. DOI:10.1016/J.RESS.2022. 108874. 108874.
|
[9] |
赵佰亭,施建国,贾晓芬. 井筒提升机数字孪生系统研究[J/OL]. 系统仿真学报:1-13[2024-08-08]. https://doi. org/10.16182/j. issn1004731x. joss. 23-0556.
ZHAO Baiting,SHI Jianguo,JIA Xiaofen. Research on digital twin system of rockshaft hoist[J/OL]. Journal of System Simulation:1-13[2024-08-08]. https://doi.org/10.16182/j.issn1004731x.joss.23-0556.
|
[10] |
刘明浩,岳彩旭,夏伟,等. 基于数字孪生的铣刀状态实时监控[J]. 计算机集成制造系统,2023,29(6):2118-2129.
LIU Minghao,YUE Caixu,XIA Wei,et al. Real-time monitoring of milling tool state based on digital twin[J]. Computer Integrated Manufacturing Systems,2023,29(6):2118-2129.
|
[11] |
LIANG Xuejun,WU Juan,RUAN Kaiyi. Simulation modeling and temperature over-advance perception of mine hoist system based on digital twin technology[J]. Machines,2023,11(10). DOI: 10.3390/MACHINES11100966.
|
[12] |
丁恩杰,俞啸,夏冰,等. 矿山信息化发展及以数字孪生为核心的智慧矿山关键技术[J]. 煤炭学报,2022,47(1):564-578.
DING Enjie,YU Xiao,XIA Bing,et al. Development of mine informatization and key technologies of intelligent mines[J]. Journal of China Coal Society,2022,47(1):564-578.
|
[13] |
SEMENOV Y,SEMENOVA O,KUVATAEV I. Solutions for digitalization of the coal industry implemented in UC kuzbassrazrezugol[J]. E3S Web of Conferences,2020,174. DOI: 10.1051/e3sconf/202017401042.
|
[14] |
陶飞,刘蔚然,张萌,等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统,2019,25(1):1-18.
TAO Fei,LIU Weiran,ZHANG Meng,et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems,2019,25(1):1-18.
|
[15] |
WANG Zili,GU Yuchen,ZHANG Shuyou,et al. A transferred hybrid surrogate model integrating Gaussian membership virtual sample generation for small sample prediction:applications in metal tube bending[J]. Engineering Applications of Artificial Intelligence,2024,129. DOI: 10.1016/J.ENGAPPAI.2023.107560.
|
[16] |
李春明,孙晓霞,张涛,等. 基于组合代理模型的变海拔工况车辆动力总成流动性能优化[J]. 机械工程学报,2023,59(4):135-144. doi: 10.3901/JME.2023.04.135
LI Chunming,SUN Xiaoxia,ZHANG Tao,et al. Optimization of powertrain mobility performance of vehicles with variable altitude working conditions by ensemble of surrogate models[J]. Journal of Mechanical Engineering,2023,59(4):135-144. doi: 10.3901/JME.2023.04.135
|
[17] |
BELKHABBAZ A,GUEGUIN M,HAFID F,et al. Surrogate model based approach to predict fatigue stress field in multi-stranded cables[J]. International Journal of Solids and Structures,2021,230/231. DOI: 10.1016/J.IJSOLSTR.2021.111168.
|
[18] |
游雄雄,牛占文. 基于组合模型的复杂系统超多目标优化算法[J]. 计算机集成制造系统,2024,30(4):1201-1212.
YOU Xiongxiong,NIU Zhanwen. Ensemble surrogateassisted evolutionary algorithm for complex system many-objective optimization[J]. Computer Integrated Manufacturing Systems,2024,30(4):1201-1212.
|
[19] |
何西旺,杨亮亮,冉仁杰,等. 基于多评价标准的代理模型综合比较研究[J]. 机械工程学报,2022,58(16):403-419. doi: 10.3901/JME.2022.16.403
HE Xiwang,YANG Liangliang,RAN Renjie,et al. Comparative studies of surrogate models based on multiple evaluation criteria[J]. Journal of Mechanical Engineering,2022,58(16):403-419. doi: 10.3901/JME.2022.16.403
|
[20] |
吕利叶,鲁玉军,王硕,等. 代理模型技术及其应用:现状与展望[J]. 机械工程学报,2024,60(3):254-281.
LYU Liye,LU Yujun,WANG Shuo,et al. Survey and prospect of surrogate model technique and application[J]. Journal of Mechanical Engineering,2024,60(3):254-281.
|
[21] |
吕利叶. 先进代理模型方法与应用研究[D]. 大连:大连理工大学,2020.
LYU Liye. On advanced surrogate models and application[J]. Dalian:Dalian University of Technology,2022.
|