Citation: | WANG Anyi, LI Xinyu, LI Mingzhu, et al. Channel estimation method for IRS assisted mine communication system based on self supervised learning[J]. Journal of Mine Automation,2024,50(8):144-150. doi: 10.13272/j.issn.1671-251x.2024070038 |
[1] |
霍振龙,肖松,孟玮,等. 矿井5G无线通信系统关键技术及装备研发与示范应用[J]. 智能矿山,2022,3(4):55-60.
HUO Zhenlong,XIAO Song,MENG Wei,et al. Research,development and demonstration application of key technologies and equipment of mine 5G wireless communication system[J]. Journal of Intelligent Mine,2022,3(4):55-60.
|
[2] |
孙翠珍,毛昕蓉,马延军. 井下OFDM信道估计算法研究[J]. 工矿自动化,2014,40(9):39-43.
SUN Cuizhen,MAO Xinrong,MA Yanjun. Research of underground OFDM channel estimation algorithm[J]. Industry and Mine Automation,2014,40(9):39-43.
|
[3] |
樊佳恒. 基于压缩感知的煤矿井下信道估计技术研究[D]. 徐州:中国矿业大学,2020.
FAN Jiaheng. Research on channel estimation technology in coal mine based on compressive sensing[D]. Xuzhou:China University of Mining and Technology,2020.
|
[4] |
BASAR E,DI RENZO M,DE ROSNY J,et al. Wireless communications through reconfigurable intelligent surfaces[J]. IEEE Access,2019,7:116753-116773. doi: 10.1109/ACCESS.2019.2935192
|
[5] |
NADEEM Q U A,ALWAZANI H,KAMMOUN A,et al. Intelligent reflecting surface-assisted multi-user MISO communication:channel estimation and beamforming design[J]. IEEE Open Journal of the Communications Society,2020,1:661-680. doi: 10.1109/OJCOMS.2020.2992791
|
[6] |
HUANG Chongwen,ZAPPONE A,ALEXANDROPOULOS G C,et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications,2019,18(8):4157-4170. doi: 10.1109/TWC.2019.2922609
|
[7] |
ARDAH K,GHEREKHLOO S,DE ALMEIDA A L F,et al. TRICE:a channel estimation framework for RIS-aided millimeter-wave MIMO systems[J]. IEEE Signal Processing Letters,2021,28:513-517. doi: 10.1109/LSP.2021.3059363
|
[8] |
KISSELEFF S,CHATZINOTAS S,OTTERSTEN B. Reconfigurable intelligent surfaces in challenging environments:underwater,underground,industrial and disaster[J]. IEEE Access,2021,9:150214-150233. doi: 10.1109/ACCESS.2021.3125461
|
[9] |
CHEN Jie,LIANG Yingchang,CHENG H V,et al. Channel estimation for reconfigurable intelligent surface aided multi-user mmWave MIMO systems[J]. IEEE Transactions on Wireless Communications,2023,22(10):6853-6869. doi: 10.1109/TWC.2023.3246264
|
[10] |
XIE Wenwu,XIAO Jian,ZHU Peng,et al. Deep compressed sensing-based cascaded channel estimation for RIS-aided communication systems[J]. IEEE Wireless Communications Letters,2022,11(4):846-850. doi: 10.1109/LWC.2022.3147590
|
[11] |
CHEN J C. Machine learning-inspired algorithmic framework for intelligent reflecting surface-assisted wireless systems[J]. IEEE Transactions on Vehicular Technology,2021,70(10):10671-10685. doi: 10.1109/TVT.2021.3110970
|
[12] |
ZHOU Gui,PAN Cunhua,REN Hong,et al. Channel estimation for RIS-aided multiuser millimeter-wave systems[J]. IEEE Transactions on Signal Processing,2022,70:1478-1492. doi: 10.1109/TSP.2022.3158024
|
[13] |
JENSEN T L,DE CARVALHO E. An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator[C]. IEEE International Conference on Acoustics,Speech and Signal Processing,Barcelona,2020:5000-5004.
|
[14] |
WANG Tianqi,WEN Chaokai,WANG Hanqing,et al. Deep learning for wireless physical layer:opportunities and challenges[J]. China Communications,2017,14(11):92-111. doi: 10.1109/CC.2017.8233654
|
[15] |
ELBIR A M,PAPAZAFEIROPOULOS A,KOURTESSIS P,et al. Deep channel learning for large intelligent surfaces aided mm-wave massive MIMO systems[J]. IEEE Wireless Communications Letters,2020,9(9):1447-1451. doi: 10.1109/LWC.2020.2993699
|
[16] |
GAO Shen,DONG Peihao,PAN Zhiwen,et al. Deep multi-stage CSI acquisition for reconfigurable intelligent surface aided MIMO systems[J]. IEEE Communications Letters,2021,25(6):2024-2028. doi: 10.1109/LCOMM.2021.3063464
|
[17] |
LIU Shicong,GAO Zhen,ZHANG Jun,et al. Deep denoising neural network assisted compressive channel estimation for mmWave intelligent reflecting surfaces[J]. IEEE Transactions on Vehicular Technology,2020,69(8):9223-9228. doi: 10.1109/TVT.2020.3005402
|
[18] |
KUNDU N K,MCKAY M R. A deep learning-based channel estimation approach for MISO communications with large intelligent surfaces[C]. IEEE 31st Annual International Symposium on Personal,Indoor and Mobile Radio Communications,London,2020:1-6.
|
[19] |
LIU Chang,LIU Xuemeng,NG D W K,et al. Deep residual learning for channel estimation in intelligent reflecting surface-assisted multi-user communications[J]. IEEE Transactions on Wireless Communications,2022,21(2):898-912. doi: 10.1109/TWC.2021.3100148
|
[20] |
李涛,蒋磊,陈博文. 独立不同分布Nakagami-m衰落信道下最大比合并性能分析[J]. 空军工程大学学报(自然科学版),2018,19(6):84-89.
LI Tao,JIANG Lei,CHEN Bowen. A performance analysis of maximal ratio combining under condition of non-identically distributed nakagami-mFading channels[J]. Journal of Air Force Engineering University (Natural Science Edition),2018,19(6):84-89.
|
[21] |
张长森,张艳芳. 矿井移动通信中Nakagami衰落信道模型的研究[J]. 计算机工程与应用,2014,50(7):238-241. doi: 10.3778/j.issn.1002-8331.1207-0345
ZHANG Changsen,ZHANG Yanfang. Research of Nakagami fading channel model in mine mobile communication[J]. Computer Engineering and Applications,2014,50(7):238-241. doi: 10.3778/j.issn.1002-8331.1207-0345
|
[22] |
CHEN Yunpeng,FAN Haoqi,XU Bing,et al. Drop an octave:reducing spatial redundancy in convolutional neural networks with octave convolution[C]. 2019 IEEE/CVF International Conference on Computer Vision,Seoul,2019:3435-3444.
|