Citation: | YAO Yupeng, XIONG Wu. Periodic pressure prediction of working face based on dynamic adaptive sailfish optimization BP neural network[J]. Journal of Mine Automation,2024,50(8):30-37. doi: 10.13272/j.issn.1671-251x.2024060060 |
[1] |
段柱平. 基于煤矿采煤工作面顶板事故原因及其防治措施探析[J]. 当代化工研究,2023(13):87-89.
DUAN Zhuping. Analysis on the causes and prevention measures of roof accidents in coal mining faces[J]. Modern Chemical Research,2023(13):87-89.
|
[2] |
TAN Tingjiang,YANG Zhen,CHANG Feng,et al. Prediction of the first weighting from the working face roof in a coal mine based on a GA-BP neural network[J]. Applied Sciences,2019,9(19). DOI: 10.3390/app9194159.
|
[3] |
李泽西. 基于可变时序移位Transformer−LSTM的集成学习矿压预测方法[J]. 工矿自动化,2023,49(7):92-98.
LI Zexi. Ensemble learning mine pressure prediction method based on variable time series shift Transformer-LSTM[J]. Journal of Mine Automation,2023,49(7):92-98.
|
[4] |
贾永杰. 野青灰岩坚硬顶板工作面来压步距与强度预测分析[J]. 煤炭与化工,2022,45(12):1-7,11.
JIA Yongjie. Prediction and analysis of pressure step and strength for Yeqing limestone hard roof[J]. Coal and Chemical Industry,2022,45(12):1-7,11.
|
[5] |
冯银辉,宋阳,李务晋,等. 基于支架数据优化的工作面矿压预测模型研究[J]. 煤炭工程,2023,55(6):101-107.
FENG Yinhui,SONG Yang,LI Wujin,et al. Mine pressure prediction model for fully mechanized working face based on data optimization of hydraulic support[J]. Coal Engineering,2023,55(6):101-107.
|
[6] |
路建军,周宏范,冯明,等. 综采工作面来压步距预测及修正方法研究[J]. 煤炭工程,2022,54(11):118-123.
LU Jianjun,ZHOU Hongfan,FENG Ming,et al. Prediction and correction method of weighting interval for fully mechanized mining face[J]. Coal Engineering,2022,54(11):118-123.
|
[7] |
赵毅鑫,杨志良,马斌杰,等. 基于深度学习的大采高工作面矿压预测分析及模型泛化[J]. 煤炭学报,2020,45(1):54-65.
ZHAO Yixin,YANG Zhiliang,MA Binjie,et al. Deep learning prediction and model generalization of ground pressure for deep longwall face with large mining height[J]. Journal of China Coal Society,2020,45(1):54-65.
|
[8] |
冀汶莉,田忠,张丁丁,等. 基于遗传算法−深度神经网络的分布式光纤监测工作面矿压预测[J]. 科学技术与工程,2022,22(24):10485-10492. doi: 10.3969/j.issn.1671-1815.2022.24.016
JI Wenli,TIAN Zhong,ZHANG Dingding,et al. Mine pressure prediction by genetic algorithm-deep neural network based on distributed optical fiber monitoring[J]. Science Technology and Engineering,2022,22(24):10485-10492. doi: 10.3969/j.issn.1671-1815.2022.24.016
|
[9] |
吕文玉,王海金,伍永平,等. 基于PSO−SVR预测模型的综采工作面周期来压研究[J]. 煤炭工程,2022,54(4):86-91.
LYU Wenyu,WANG Haijin,WU Yongping,et al. PSO-SVR prediction model of periodic weighting in fully mechanized working face[J]. Coal Engineering,2022,54(4):86-91.
|
[10] |
高阳. 基于长短时记忆神经网络的工作面矿压预测方法研究[D]. 焦作:河南理工大学,2022.
GAO Yang. Study on prediction method of mine pressure in working face based on long-short-term memory neural network[D]. Jiaozuo:Henan Polytechnic University,2022.
|
[11] |
LIU Yaping,DONG Lihong,YE Ou. Mine pressure prediction model of fully mechanized mining face based on improved transformer[C]. IEEE International Conference on Signal Processing,Communications and Computing,Xi'an,2022:1-5.
|
[12] |
RUMELHART D E,HINTON G E,WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature,1986,323:533-536. doi: 10.1038/323533a0
|
[13] |
张琦. 综放工作面周期来压步距和来压强度的定量预测方法研究[J]. 煤炭与化工,2017,40(2):37-39,42.
ZHANG Qi. Study on quantitative prediction methods of ground pressure strength and periodic weighting length in fully mechanized caving face[J]. Coal and Chemical Industry,2017,40(2):37-39,42.
|
[14] |
王陈真. 孤岛综放工作面覆岩结构分析及矿压特征研究[J]. 煤矿现代化,2019(5):26-29. doi: 10.3969/j.issn.1009-0797.2019.05.009
WANG Chenzhen. The analysis of overburden rock structure and the study of ore pressure characteristics in the fully mechanized caving face of isolated island[J]. Coal Mine Modernization,2019(5):26-29. doi: 10.3969/j.issn.1009-0797.2019.05.009
|
[15] |
李云鹏,赵善坤,李杨,等. 复杂坚硬岩层条件下特厚煤层综放开采矿压分级预测[J]. 煤炭学报,2021,46(增刊1):38-48.
LI Yunpeng,ZHAO Shankun,LI Yang,et al. Prediction on weighting classification of fully-mechanized caving mining under extremely thick coal seam[J]. Journal of China Coal Society,2021,46(S1):38-48.
|
[16] |
巩师鑫,任怀伟,杜毅博,等. 基于MRDA−FLPEM集成算法的综采工作面矿压迁移预测[J]. 煤炭学报,2021,46(增刊1):529-538.
GONG Shixin,REN Huaiwei,DU Yibo,et al. Transfer prediction of underground pressure for fully mechanized mining face based on MRDA-FLPEM integrated algorithm[J]. Journal of China Coal Society,2021,46(S1):529-538.
|
[17] |
SHADRAVAN S,NAJI H R,BARDSIRI V K. The sailfish optimizer:a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems[J]. Engineering Applications of Artificial Intelligence,2019,80:20-34. doi: 10.1016/j.engappai.2019.01.001
|
[18] |
黄鹤,熊武,吴琨,等. 基于记忆传递旗鱼优化的K均值混合迭代聚类[J]. 上海交通大学学报,2022,56(12):1638-1648.
HUANG He,XIONG Wu,WU Kun,et al. K-means hybrid iterative clustering based on memory transfer sailfish optimization[J]. Journal of Shanghai Jiao Tong University,2022,56(12):1638-1648.
|
[19] |
段洁,伍瑞泽,尤敬尧,等. 基于改进秃鹰算法优化LSSVM的变压器故障诊断[J]. 红水河,2024,43(1):96-101. doi: 10.3969/j.issn.1001-408X.2024.01.018
DUAN Jie,WU Ruize,YOU Jingyao,et al. Transformer fault diagnosis based on improved vulture algorithm to optimize LSSVM[J]. Hongshui River,2024,43(1):96-101. doi: 10.3969/j.issn.1001-408X.2024.01.018
|
[20] |
田劼,李阳,张磊,等. 基于PSO−BP神经网络的临时支架支撑力自适应控制[J]. 工矿自动化,2023,49(7):67-74.
TIAN Jie,LI Yang,ZHANG Lei,et al. Adaptive control of temporary support force based on PSO-BP neural network[J]. Journal of Mine Automation,2023,49(7):67-74.
|
[21] |
顾丽丽,刘勇,甄佳奇. 基于改进粒子群算法优化BP神经网络的甜菜产量预测方法[J]. 新疆大学学报(自然科学版),2021,38(2):191-196.
GU Lili,LIU Yong,ZHEN Jiaqi. Prediction of beet yield based on BP neural network optimized by improved particle swarm algorithm[J]. Journal of Xinjiang University(Natural Science Edition),2021,38(2):191-196.
|