Citation: | XUE Xiaoyong, HE Xinyu, YAO Chaoxiu, et al. Small object detection method for mining face based on improved YOLOv8n[J]. Journal of Mine Automation,2024,50(8):105-111. doi: 10.13272/j.issn.1671-251x.2024060013 |
[1] |
郝帅,杨晨禄,赵秋林,等. 基于双分支头部解耦和注意力机制的灾害环境人体检测[J]. 西安科技大学学报,2023,43(4):797-806.
HAO Shuai,YANG Chenlu,ZHAO Qiulin,et al. Pedestrian detection method in disaster environment based on double branch decoupled head and attention mechanism[J]. Journal of Xi'an University of Science and Technology,2023,43(4):797-806.
|
[2] |
罗南超,郑伯川. 视频监控领域深度特征编码的行人检测算法[J]. 西安科技大学学报,2019,39(4):701-707.
LUO Nanchao,ZHENG Bochuan. Deep feature coding for pedestrian detection in video surveillance[J]. Journal of Xi'an University of Science and Technology,2019,39(4):701-707.
|
[3] |
程德强,寇旗旗,江鹤,等. 全矿井智能视频分析关键技术综述[J]. 工矿自动化,2023,49(11):1-21.
CHENG Deqiang,KOU Qiqi,JIANG He,et al. Overview of key technologies for mine-wide intelligent video analysis[J]. Journal of Mine Automation,2023,49(11):1-21.
|
[4] |
赵伟,王爽,赵东洋. 基于SD−YOLOv5s−4L的煤矿井下无人驾驶电机车多目标检测[J]. 工矿自动化,2023,49(11):121-128.
ZHAO Wei,WANG Shuang,ZHAO Dongyang. Multi object detection of underground unmanned electric locomotives in coal mines based on SD-YOLOv5s-4L[J]. Journal of Mine Automation,2023,49(11):121-128.
|
[5] |
REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]. The IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:779-788.
|
[6] |
REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]. The IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:7263-7271.
|
[7] |
REDMON J,FARHADI A. Yolov3:an incremental improvement[EB/OL]. [2024-04-23]. https://pjreddie.com/media/files/papers/YOLOv3.pdf.
|
[8] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection [Z/OL]. [2024-05-23]. https://doi.org/10.48550/arXiv. 2004.10934.
|
[9] |
REN Shaoqing,HE Kaiming, GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
|
[10] |
HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al. Deep residual learning for image recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:770-778.
|
[11] |
HUANG Gao,LIU Zhuang,VAN DER MAATEN L,et al. Densely connected convolutional networks[C]. The IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:4700-4708.
|
[12] |
HOWARD A G,ZHU Menglong,CHEN Bo,et al. Mobilenets:efficient convolutional neural networks for mobile vision applications[Z/OL]. [2024-04-23]. https://arxiv.org/pdf/1704.04861.
|
[13] |
崔铁军,王凌霄. YOLOv4目标检测算法在煤矿工人口罩佩戴监测工作中的应用研究[J]. 中国安全生产科学技术,2021,17(10):66-71.
CUI Tiejun,WANG Lingxiao. Research on application of YOLOv4 object detection algorithm in monitoring on masks wearing of coal miners[J]. Journal of Safety Science and Technology,2021,17(10):66-71.
|
[14] |
李熙尉,孙志鹏,王鹏,等. 基于YOLOv5s改进的井下人员和安全帽检测算法研究[J]. 煤,2023,32(3):22-25. doi: 10.3969/j.issn.1005-2798.2023.03.006
LI Xiwei,SUN Zhipeng,WANG Peng,et al. Research on underground personnel and safety helmet detection algorithm based on YOLOv5s improvement[J]. Coal,2023,32(3):22-25. doi: 10.3969/j.issn.1005-2798.2023.03.006
|
[15] |
曹帅,董立红,邓凡,等. 基于YOLOv7−SE的煤矿井下场景小目标检测方法[J]. 工矿自动化,2024,50(3):35-41.
CAO Shuai,DONG Lihong,DENG Fan,et al. A small object detection method for coal mine underground scene based on YOLOv7-SE[J]. Journal of Mine Automation,2024,50(3):35-41.
|
[16] |
王科平,连凯海,杨艺,等. 基于改进YOLOv4的综采工作面目标检测[J]. 工矿自动化,2023,49(2):70-76.
WANG Keping,LIAN Kaihai,YANG Yi,et al. Target detection of the fully mechanized working face based on improved YOLOv4[J]. Journal of Mine Automation,2023,49(2):70-76.
|
[17] |
顾清华,何鑫鑫,王倩,等. 基于改进YOLOv5的煤矿井下暗环境矿工安全穿戴智能识别[J]. 矿业研究与开发,2024,44(3):201-208.
GU Qinghua,HE Xinxin,WANG Qian,et al. Research on intelligent recognition of safety wearing of miners in dark enviroment of coal mine based on improved YOLOv5[J]. Mining Research and Development,2024,44(3):201-208.
|
[18] |
寇发荣,肖伟,何海洋,等. 基于改进YOLOv5的煤矿井下目标检测研究[J]. 电子与信息学报,2023,45(7):2642-2649. doi: 10.11999/JEIT220725
KOU Farong,XIAO Wei,HE Haiyang,et al. Research on target detection in underground coal mines based on improved YOLOv5[J]. Journal of Electronics & Information Technology,2023,45(7):2642-2649. doi: 10.11999/JEIT220725
|
[19] |
GE Zheng,LIU Songtao,WANG Feng,et al. Yolox:Exceeding YOLO series in 2021[Z/OL]. [2024-04-23]. https://arxiv.org/pdf/2107.08430.
|
[20] |
YU F,KOLTUN V. Multi-scale context aggregation by dilated convolutions[Z/OL]. [2024-04-23]. https://arxiv.org/pdf/1511.07122.
|
[21] |
DAI Jifeng,QI Haozhi,XIONG Yuwen,et al. Deformable convolutional networks[C]. The IEEE International Conference on Computer Vision,Venice,2017:764-773.
|
[22] |
QI Yaolei,HE Yuting,QI Xiaoming,et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]. The IEEE/CVF International Conference on Computer Vision,Paris,2023:6070-6079.
|
[23] |
LIU Huajun,LIU Fuqiang,FAN Xinyi,et al. Polarized self-attention:towards high-quality pixel-wise regression[Z/OL]. [2024-04-23]. https://arxiv.org/pdf/2107.00782.
|