Citation: | CAO Lianmin, GUO Zhen, ZHONG Chongtao, SUN Shijiao, ZHANG Zhe. Design and application of manual pressurization device for initial support force of hydraulic support[J]. Journal of Mine Automation, 2017, 43(6): 10-14. DOI: 10.13272/j.issn.1671-251x.2017.06.003 |
[1] | LI Dianze, XU Huajie, ZHANG Bo. Rock fracture type recognition based on deep feature learning of microseismic signals[J]. Journal of Mine Automation, 2025, 51(3): 156-164. DOI: 10.13272/j.issn.1671-251x.2024080043 |
[2] | GUO Xiaoyuan, ZHU Meiqiang, TIAN Jun, ZHU Beibei. Detection and recognition of unsafe behaviors of underground coal miners based on deep learning[J]. Journal of Mine Automation, 2025, 51(3): 138-147. DOI: 10.13272/j.issn.1671-251x.2025030011 |
[3] | WANG Xufeng. Location trajectory prediction of mining vehicles based on depth learning[J]. Journal of Mine Automation, 2024, 50(S1): 48-52. |
[4] | ZUO Mingming, ZHANG Xi, YANG Zihao, SUN Qifei, ZHANG Mengchao, ZHANG Yuan, LI Hu. Intelligent monitoring method for conveyor belt misalignment based on deep learning[J]. Journal of Mine Automation, 2024, 50(12): 166-172, 182. DOI: 10.13272/j.issn.1671-251x.2024030043 |
[5] | DOU Guidong, BAI Yishuo, WANG Junli, HUANG Bohao, YANG Kang. A fault diagnosis method for mine rolling bearings based on deep learning[J]. Journal of Mine Automation, 2024, 50(1): 96-103, 154. DOI: 10.13272/j.issn.1671-251x.2023070085 |
[6] | LI Jincai, FU Wenlong, WANG Renming, CHEN Xing, MENG Jiaxin. Intelligent fault diagnosis of rolling bearings based on deep network[J]. Journal of Mine Automation, 2022, 48(4): 78-88. DOI: 10.13272/j.issn.1671-251x.2022010008 |
[7] | HU Jinghao, GAO Yan, ZHANG Hongjuan, JIN Baoquan. Research on the identification method of non-coal foreign object ofbelt conveyor based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 57-62. DOI: 10.13272/j.issn.1671-251x.2021020041 |
[8] | ZHANG Mengchao, ZHOU Manshan, ZHANG Yuan, YU Yan, LI Hu. Damage detection method for mine conveyor belt based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 51-56. DOI: 10.13272/j.issn.1671-251x.2021040010 |
[9] | LI Changwen, CHENG Zeyin, ZHANG Xiaogang, DING Hua. Fault diagnosis of shearer rocker gear based on deep residual network[J]. Journal of Mine Automation, 2021, 47(3): 71-78. DOI: 10.13272/j.issn.1671-251x.2020110043 |
[10] | TANG Shiyu, ZHU Aichun, ZHANG Sai, CAO Qingfeng, CUI Ran, HUA Gang. Target detection of underground personnel based on deep convolutional neural network[J]. Journal of Mine Automation, 2018, 44(11): 32-36. DOI: 10.13272/j.issn.1671—251x.2018050068 |
1. |
杨颖. 药剂智能添加系统在煤泥水浓缩中的应用. 内蒙古煤炭经济. 2025(02): 119-121 .
![]() |