ZHANG Mengchao, ZHOU Manshan, ZHANG Yuan, YU Yan, LI Hu. Damage detection method for mine conveyor belt based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 51-56. DOI: 10.13272/j.issn.1671-251x.2021040010
Citation: ZHANG Mengchao, ZHOU Manshan, ZHANG Yuan, YU Yan, LI Hu. Damage detection method for mine conveyor belt based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 51-56. DOI: 10.13272/j.issn.1671-251x.2021040010

Damage detection method for mine conveyor belt based on deep learning

More Information
  • In order to solve the problem that the current conveyor belt damage detection methods lack research on damage types other than conveyor belt tear, a damage detection method for mine conveyor belt based on deep learning is proposed. And the conveyor belt damage types are classified by the Yolov4-tiny target detection network. The Yolov4-tiny target detection network uses CSPDarknet53-tiny as the backbone feature extraction network, draws on the Resnet residual idea, uses residual blocks to prevent the loss of high-level semantic features in the deep network. At the same time, the method uses feature pyramid network to obtain the fusion of high-level and low-level semantic information to achieve the purpose of improving detection precision. The two effective feature layers in CSPDarknet53-tiny are input into the prediction network Yolo Head, and the prediction frames are filtered by the score ranking and non-maximum suppression algorithm to predict the types of conveyor belt damage. The experimental results show that the average precision of the Yolov4-tiny target detection network on the conveyor belt damage data set for the four damage types of surface scratches, tears, surface damage and breakdown is 99.36%, 94.85%, 89.30%, and 86.76% respectively, and the mean average precision is 92.57%. Compared with Faster-RCNN, RFBnet, M2det, SSD, Yolov3, EfficientDet and Yolov4 target detection networks, the Yolov4-tiny target detection network achieves the fastest detection speed on the data set with a frame rate of 101 frames/s. The network achieves better balance between speed and precision, and occupies relatively less computing resources. The detection of fresh samples outside the data set verifies that the method in this paper has good generalization ability.
  • Related Articles

    [1]YANG Zelin, YANG Liqing, HAO Bin. Detection of surface defects on conveyor belts based on adversarial repair networks[J]. Journal of Mine Automation, 2024, 50(9): 108-114, 166. DOI: 10.13272/j.issn.1671-251x.2024030002
    [2]YE Meitu, LIANG Yiwei, WANG Kun. Research on laser measuring device of surface displacements of mine roadway[J]. Journal of Mine Automation, 2018, 44(7): 84-87. DOI: 10.13272/j.issn.1671-251x.2017120086
    [3]CHEN Shun, ZHENG Nanshan, QI Yun, BAN Meng. Application research on Offset Tracking technology in monitoring oflarge surface deformation in coal mine subsidence area[J]. Journal of Mine Automation, 2017, 43(6): 32-37. DOI: 10.13272/j.issn.1671-251x.2017.06.008
    [4]LIU Yongjie, CHEN Peng, ZHANG Liqiang, LI Siyao. Experimental research of surface potential of coal containing gas under cyclic loading[J]. Journal of Mine Automation, 2015, 41(9): 26-30. DOI: 10.13272/j.issn.1671-251x.2015.09.008
    [5]WANG Yong-chao, SUN Huai-xiang. Application of Access and MCGS in Loading System of Main Shaft[J]. Journal of Mine Automation, 2010, 36(5): 94-97.
    [6]ZHOU Xin, MIAO Chang-yun, LI Yan-feng, WU Zhi-gang. Optimization of CS-ACELP Voice Code Algorithm and Its Implementation on DSP[J]. Journal of Mine Automation, 2009, 35(12): 69-72.
    [7]CAO Wen, SUN Wei, ZHAO Hui. Application Based on Ethernet of Microsoft Office Access in Query System of RSView Report Formas[J]. Journal of Mine Automation, 2007, 33(5): 123-124.
    [9]FAN Yong-fa, ZHENG Chang-hong. Image Acquisition for Automatic Inspection of Surface Cracks of Workpieces[J]. Journal of Mine Automation, 2003, 29(3): 29-30.
    [10]WU Bao-mi. Application of Surface Technology in Mine Machinery[J]. Journal of Mine Automation, 1999, 25(5): 45-46.
  • Cited by

    Periodical cited type(15)

    1. 游磊,向兆军,孙柳军. 基于线结构光的矿用输送带纵向撕裂检测技术. 矿业安全与环保. 2025(01): 180-186 .
    2. 张舒,叶涛,陈云. 改进YOLOv5的矿用输送带损伤检测方法. 起重运输机械. 2024(02): 31-36 .
    3. 张释如,余文瑾,王锐. 基于CNN-SVM的输送带纵向撕裂检测方法研究. 煤炭技术. 2024(07): 201-204 .
    4. 张克亮. 基于MT-CNN的矿井带式输送机输煤量检测技术. 中国矿业. 2024(06): 137-142 .
    5. 王振珺. 基于CenterNet算法的带式输送机输送带破损检测方法与应用. 建井技术. 2024(03): 85-89 .
    6. 杨泽霖,杨立清,郝斌. 基于对抗修复网络的输送带表面缺陷检测. 工矿自动化. 2024(09): 108-114+166 . 本站查看
    7. 张宏飞,冯永利,黄金凤. 改进YOLOv5的输送带缺陷检测. 电子测量技术. 2024(22): 161-168 .
    8. 秦彤,李晓明. 改进YOLOv4的输送带纵向撕裂检测. 计算机系统应用. 2023(03): 186-194 .
    9. 张俊科,吴敬兵,吴晓晓. 基于YOLOv5的岸边集装箱桥式起重机钢丝绳损伤检测方法. 起重运输机械. 2023(16): 30-36 .
    10. 王学立,赵辰燃,李青,何显能,甘梅. 基于多模态的输送带撕裂大模型算法设计. 煤矿安全. 2023(09): 202-207 .
    11. 郭洁,井庆贺,闫寿庆,王鑫,谢苗,吴意兵. 基于MFCC声音特征信号提取的托辊故障诊断. 中国安全科学学报. 2023(S2): 116-121 .
    12. 熊念强,文锋,李清,陈磊,周冉. 带式输送机胶带撕裂检测技术综述. 煤炭工程. 2022(07): 79-85 .
    13. 陈云,吴敬兵,叶涛. 基于目标检测的输送带损伤检测方法. 自动化与仪表. 2022(11): 64-69 .
    14. 陈亮,杨迪. 改进Centernet的输送带损伤检测. 平顶山学院学报. 2022(05): 20-23+33 .
    15. 周宇杰,徐善永,黄友锐,唐超礼. 基于改进YOLOv4的输送带损伤检测方法. 工矿自动化. 2021(11): 61-65 . 本站查看

    Other cited types(10)

Catalog

    Article Metrics

    Article views (202) PDF downloads (58) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return