WANG Xufeng. Location trajectory prediction of mining vehicles based on depth learning[J]. Journal of Mine Automation, 2024, 50(S1): 48-52.
Citation: WANG Xufeng. Location trajectory prediction of mining vehicles based on depth learning[J]. Journal of Mine Automation, 2024, 50(S1): 48-52.

Location trajectory prediction of mining vehicles based on depth learning

More Information
  • Received Date: January 24, 2024
  • [1]
    李雪松, 张锲石, 宋呈群, 等.自动驾驶场景下的轨迹预测技术综述[J].计算机工程, 2023, 49(5):1-11.
    [2]
    樊振宇.基于深度学习的自动驾驶汽车周边车辆轨迹预测方法研究[D].镇江:江苏大学, 2023.
    [3]
    王孜健, 李心怡, 景峻, 等.高速公路跟车场景的碰撞时间改进方法及应用案例研究[J].科技与创新, 2023(11):123-125.
    [4]
    贾硕.面向智能网联的驾驶行为识别与预测预警方法研究[D].西安:长安大学, 2023.
    [5]
    王建.掘进机可视化远程控制系统的设计及试验研究[J].西部探矿工程, 2023, 35(11):162-164.
    [6]
    李文枫.煤矿井下智能化高效掘进控制体系的构建与应用[J].内蒙古煤炭经济, 2023(11):127-129.
    [7]
    李朋.面向控制安全冗余的智能车辆轨迹规划与跟踪研究[D].武汉:武汉理工大学, 2023.
    [8]
    姚振鑫.基于深度学习的车辆跟踪与轨迹预测研究[D].上海:上海工程技术大学, 2023.
    [9]
    章璐璐, 李思照.基于深度学习的智能体轨迹预测文献综述[J].无线电工程, 2023, 53(3):644-656.
    [10]
    谢枫, 娄静涛, 赵凯, 等.基于行为识别和曲率约束的车辆轨迹预测方法研究[J].汽车工程, 2019, 41(9):1036-1042.
    [11]
    胡灵.基于LSTM的自动驾驶车辆轨迹预测方法研究[D].桂林:桂林电子科技大学, 2022.
    [12]
    李名城, 张博通, 陈溢铭, 等.卷积增强循环神经网络在文本分类中的应用[J].咸阳师范学院学报, 2021, 36(2):24-29.
    [13]
    王丽, 涂冰花, 王伟, 等.长短期记忆循环神经网络在自动语音识别中的应用[J].单片机与嵌入式系统应用, 2023, 23(10):49-52.
    [14]
    董于春.基于循环神经网络和可形变卷积的视频超分方法[D].上海:华东师范大学, 2022.
    [15]
    季学武, 费聪, 何祥坤, 等.基于LSTM网络的驾驶意图识别及车辆轨迹预测[J].中国公路学报, 2019, 32(6):34-42.
    [16]
    孙影, 王铁.基于时间序列的目标车辆轨迹预测算法[J].汽车实用技术, 2020(6):31-33.
    [17]
    齐战硕, 高彦东.面向消除通信时延的车辆轨迹多步预测方法[J].计算机与现代化, 2022(5):114-118.
    [18]
    PARK S H, KIM B D, KANG C M, et al.Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture[C].IEEE Intelligent Vehicles Symposium, 2018.
    [19]
    BOGAERTS T, MASEGOSA A D, ANGARITA-ZAPATA J S, et al.A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data[J].Transportation Research Part C:Emerging Technologies, 2020, 112:62-77.
    [20]
    孙娅楠.梯度下降法在机器学习中的应用[D].成都:西南交通大学, 2018.
    [21]
    叶美彤.非凸随机设定下两类RMSProp算法的收敛性[D].长春:东北师范大学, 2021.
    [22]
    雷剑.基于Adam优化神经网络的电梯群控算法的研究[D].衡阳:南华大学, 2022.
  • Related Articles

    [1]LI Dianze, XU Huajie, ZHANG Bo. Rock fracture type recognition based on deep feature learning of microseismic signals[J]. Journal of Mine Automation, 2025, 51(3): 156-164. DOI: 10.13272/j.issn.1671-251x.2024080043
    [2]GUO Xiaoyuan, ZHU Meiqiang, TIAN Jun, ZHU Beibei. Detection and recognition of unsafe behaviors of underground coal miners based on deep learning[J]. Journal of Mine Automation, 2025, 51(3): 138-147. DOI: 10.13272/j.issn.1671-251x.2025030011
    [3]ZUO Mingming, ZHANG Xi, YANG Zihao, SUN Qifei, ZHANG Mengchao, ZHANG Yuan, LI Hu. Intelligent monitoring method for conveyor belt misalignment based on deep learning[J]. Journal of Mine Automation, 2024, 50(12): 166-172, 182. DOI: 10.13272/j.issn.1671-251x.2024030043
    [4]CHEN Wanhui, GUO Rui, HAN Wei, SONG Yongming, LIANG Yanxiang, LIU Yao, WANG Jiaming, XU Na, MENG Bo. Research on intelligent design of coal mine roadway support scheme[J]. Journal of Mine Automation, 2024, 50(8): 76-83, 90. DOI: 10.13272/j.issn.1671-251x.2024060044
    [5]LAN Yongqing, QIAO Yuandong, CHENG Hongming, LEI Lixing, LUO Huafeng. Gas concentration prediction model based on SSA-LSTM[J]. Journal of Mine Automation, 2024, 50(2): 90-97. DOI: 10.13272/j.issn.1671-251x.2023090067
    [6]LI Jincai, FU Wenlong, WANG Renming, CHEN Xing, MENG Jiaxin. Intelligent fault diagnosis of rolling bearings based on deep network[J]. Journal of Mine Automation, 2022, 48(4): 78-88. DOI: 10.13272/j.issn.1671-251x.2022010008
    [7]HU Jinghao, GAO Yan, ZHANG Hongjuan, JIN Baoquan. Research on the identification method of non-coal foreign object ofbelt conveyor based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 57-62. DOI: 10.13272/j.issn.1671-251x.2021020041
    [8]ZHANG Mengchao, ZHOU Manshan, ZHANG Yuan, YU Yan, LI Hu. Damage detection method for mine conveyor belt based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 51-56. DOI: 10.13272/j.issn.1671-251x.2021040010
    [9]LI Changwen, CHENG Zeyin, ZHANG Xiaogang, DING Hua. Fault diagnosis of shearer rocker gear based on deep residual network[J]. Journal of Mine Automation, 2021, 47(3): 71-78. DOI: 10.13272/j.issn.1671-251x.2020110043
    [10]TANG Shiyu, ZHU Aichun, ZHANG Sai, CAO Qingfeng, CUI Ran, HUA Gang. Target detection of underground personnel based on deep convolutional neural network[J]. Journal of Mine Automation, 2018, 44(11): 32-36. DOI: 10.13272/j.issn.1671—251x.2018050068
  • Cited by

    Periodical cited type(1)

    1. 刘温良,彭国兰. 基于聚类算法的散货码头装卸车作业任务的智能识别系统. 福建技术师范学院学报. 2024(05): 64-74 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (8) PDF downloads (1) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return