Citation: | ZUO Mingming, ZHANG Xi, YANG Zihao, et al. Intelligent monitoring method for conveyor belt misalignment based on deep learning[J]. Journal of Mine Automation,2024,50(12):166-172, 182. DOI: 10.13272/j.issn.1671-251x.2024030043 |
Existing methods for monitoring conveyor belt misalignment face challenges in terms of practicality, robustness, and the difficulty of dataset creation. This paper proposed an intelligent monitoring method for conveyor belt misalignment based on deep learning. First, the conveyor belt edge recognition problem was treated as a line detection issue in a specific scenario. A strategy was proposed to detect the straight lines of the conveyor belt edges using the diagonal features of the bounding box predicted by the object detection network. Specifically, the top-right to bottom-left diagonal of the predicted bounding box was used to represent the left edge of the conveyor belt, and the top-left to bottom-right diagonal was used to represent the right edge. The YOLOv5 model was employed to detect the conveyor belt edges, and a misalignment calculation method and misalignment state determination rules were developed. Experimental results demonstrated that the diagonal features of the predicted bounding box could stably and efficiently achieve conveyor belt edge recognition and misalignment quantification, thereby simplifying image data processing and annotation tasks. The method exhibited strong generalization ability and rapid transfer learning capability. The YOLOv5 model, combined with the line detection strategy, showed excellent anti-interference performance for detecting material flow boundaries, support pillars, and other straight lines. On the CUMT-BELT dataset, the detection accuracy exceeded 99%, with a maximum detection speed of 148 frames per second, ensuring excellent real-time performance.
[1] |
陈云,吴敬兵,叶涛. 基于目标检测的输送带损伤检测方法[J]. 自动化与仪表,2020,37(6):64-69.
CHEN Yun,WU Jingbing,YE Tao. Conveyor belt damage detection method based on object detection[J]. Automation & Instrumentation,2020,37(6):64-69.
|
[2] |
周坪,马国庆,周公博,等. 智能化带式输送机健康监测技术研究综述[J]. 仪器仪表学报,2023,44(12):1-21.
ZHOU Ping,MA Guoqing,ZHOU Gongbo,et al. Health monitoring technology for the intelligent belt conveyor:a review[J]. Chinese Journal of Scientific Instrument,2023,44(12):1-21.
|
[3] |
袁敦鹏. 基于三维点云的带式输送机跑偏及堆煤监测技术研究[D]. 徐州:中国矿业大学,2022.
YUAN Dunpeng. Study on the belt conveyor deviation and coal stacking monitoring based on three-dimensional point cloud[D]. Xuzhou:China University of Mine and Technology,2022.
|
[4] |
谭恒,张红娟,靳宝全,等. 基于机器视觉的煤矿带式输送机跑偏检测方法[J]. 煤炭技术,2021,40(5):152-156.
TAN Heng,ZHANG Hongjuan,JIN Baoquan,et al. Method for detecting deviation of coal mine belt conveyor based on machine vision[J]. Coal Technology,2021,40(5):152-156.
|
[5] |
王平. 基于数字图像处理的输送带跑偏状态实时监测技术[J]. 煤矿机械,2021,42(2):168-170.
WANG Ping. Real-time monitoring technology of conveyor belt deviation state based on digital image processing[J]. Coal Mine Machinery,2021,42(2):168-170.
|
[6] |
王星,白尚旺,潘理虎,等. 基于计算机视觉的带式输送机跑偏监测[J]. 煤矿安全,2017,48(5):130-133.
WANG Xing,BAI Shangwang,PAN Lihu,et al. Deviation monitoring of belt conveyor based on computer vision[J]. Safety in Coal Mines,2017,48(5):130-133.
|
[7] |
董征,张旭辉,王泰华,等. 基于机器视觉的矿用带式输送机跑偏故障检测系统[J]. 智能矿山,2022,3(2):60-65.
DONG Zheng,ZHANG Xuhui,WANG Taihua,et al. Fault detection system of mine belt conveyor deviation based on machine vision[J]. Journal of Intelligent Mine,2022,3(2):60-65.
|
[8] |
ZHANG Mengchao,SHI Hao,YU Yan,et al. A computer vision based conveyor deviation detection system[J]. Applied Sciences,2020,10(7). DOI:10.3390/ app10072402.
|
[9] |
韩涛,黄友锐,张立志,等. 基于图像识别的带式输送机输煤量和跑偏检测方法[J]. 工矿自动化,2020,46(4):17-22.
HAN Tao,HUANG Yourui,ZHANG Lizhi,et al. Detection method of coal quantity and deviation of belt conveyor based on image recognition[J]. Industry and Mine Automation,2020,46(4):17-22.
|
[10] |
ZENG Chan,ZHENG Junfeng,LI Jiangyun. Real-time conveyor belt deviation detection algorithm based on multi-scale feature fusion network[J]. Algorithms,2019,12(10). DOI: 10.3390/a12100205.
|
[11] |
聂志勇,官锋,穆杞梓. 基于图像分割的皮带跑偏故障分级报警方法研究[J]. 中国设备工程,2023(24):271-274. DOI: 10.3969/j.issn.1671-0711.2023.24.110
NIE Zhiyong,GUAN Feng,MU Qizi. Research on grading alarm method of belt deviation fault based on image segmentation[J]. China Plant Engineering,2023(24):271-274. DOI: 10.3969/j.issn.1671-0711.2023.24.110
|
[12] |
曾飞,陶玉衡,苏俊彬,等. 融合ResNet18和Deconvolution的输送带横向跑偏检测方法[J]. 现代制造工程,2023(8):121-126.
ZENG Fei,TAO Yuheng,SU Junbin,et al. Detection method of conveyor belt lateral deviation by integrating ResNet18 and Deconvolution[J]. Modern Manufacturing Engineering,2023(8):121-126.
|
[13] |
LIU Yi,MIAO Changyun,LI Xianguo,et al. Research on deviation detection of belt conveyor based on inspection robot and deep learning[J]. Complexity,2021,2021(1). DOI: 10.1155/2021/3734560.
|
[14] |
WANG Jingbo,LIU Qing,DAI Mengting. Belt vision localization algorithm based on machine vision and belt conveyor deviation detection[C]. 34th Youth Academic Annual Conference of Chinese Association of Automation,Jinzhou,2019:269-273.
|
[15] |
AGGARWAL N,KARL W C. Line detection in images through regularized Hough transform[J]. IEEE Transactions on Image Processing,2006,15(3):582-591. DOI: 10.1109/TIP.2005.863021
|
[16] |
XU Yifan,XU Weijian,CHEUNG D,et al. Line segment detection using transformers without edges[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville,2021:4257-4266.
|
[17] |
HUANG Siyu,QIN Fangbo,XIONG Pengfei,et al. TP-LSD:tri-points based line segment detector[EB/OL]. [2024-02-20]. https://arxiv.org/abs/2009.05505?context=cs.CV.
|
[18] |
ZHU Xingkui,LYU Shuchang,WANG Xu,et al. TPH-YOLOv5:improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]. IEEE/CVF International Conference on Computer Vision Workshops,Montreal,2021:2778-2788.
|
[19] |
LIU Wei,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[C]. European Conference on Computer Vision,Amsterdam,2016:21-37.
|
[20] |
CARION N,MASSA F,SYNNAEVE G,et al. End-to-end object detection with transformers[C]. European Conference on Computer Vision,Munich,2020:213-229.
|
[21] |
程德强,陈杰,寇旗旗,等. 融合层次特征和注意力机制的轻量化矿井图像超分辨率重建方法[J]. 仪器仪表学报,2022,43(8):73-84.
CHENG Deqiang,CHEN Jie,KOU Qiqi,et al. Lightweight super-resolution reconstruction method based on hierarchical features fusion and attention mechanism for mine image[J]. Chinese Journal of Scientific Instrument,2022,43(8):73-84.
|
1. |
秦翥. 带式输送机智能化发展现状研究. 煤矿机械. 2025(01): 73-76 .
![]() | |
2. |
陈淑彬. 智能化保护在带式输送机中的应用. 化学工程与装备. 2024(10): 121-124 .
![]() |