LIANG Hong. Open-circuit fault diagnosis method for switching tube of mine NPC three-level inverter[J]. Journal of Mine Automation,2022,48(10):142-150. DOI: 10.13272/j.issn.1671-251x.17974
Citation: LIANG Hong. Open-circuit fault diagnosis method for switching tube of mine NPC three-level inverter[J]. Journal of Mine Automation,2022,48(10):142-150. DOI: 10.13272/j.issn.1671-251x.17974

Open-circuit fault diagnosis method for switching tube of mine NPC three-level inverter

More Information
  • Received Date: August 07, 2022
  • Revised Date: October 19, 2022
  • Available Online: October 24, 2022
  • The inverter of the motor drive system in the mine hoist and belt conveyor mostly adopts neutral point clamped (NPC) three-level inverter. This inverter has a large number of switching tubes and high running frequency. Switching the working state of the switching tubes at high frequency in a short time and in complex working environment are prone to open-circuit fault. The fault signal has non-stationary characteristics. The existing fault diagnosis method for switching tube of NPC three-level inverter has the problems of difficult fault feature extraction, large calculation amount, and low fault accuracy. In order to solve the above problems, an open-circuit fault diagnosis method for switching tube of mine NPC three-level inverter based on probabilistic neural network (PNN) is proposed. Firstly, the phase voltage signals of three-phase of inverter are collected by oscilloscope. The phase voltage signals are processed by denoising and normalization. Secondly, the three-phase voltage is converted into two-phase rotating (d-q) coordinate system voltage by Clark transform and Park transform. The d-axis voltage is decomposed into multiple intrinsic mode function (IMF) using empirical mode decomposition (EMD). For different open-circuit faults, the variance contribution rate of each IMF is calculated. The variance contribution rates of the second, third and eighth IMF differ greatly. The three IMF represent different open-circuit faults. The mean, mean square and variance of the second, third and eighth IMF are calculated as the open-circuit fault feature vector of the inverter switching tube. Finally, the feature vector is input into the PNN for training and classification. The open-circuit fault diagnosis of the NPC three-level invert switching tube is realized. The experimental results show that the fault diagnosis method based on PNN has higher fault diagnosis accuracy than the fault diagnosis method based on CNN and SVM, and the average fault diagnosis accuracy reaches 97.75%.
  • [1]
    王谦,曹娜. 矿用远距离供电高压变频器输出滤波装置设计[J]. 工矿自动化,2019,45(12):97-100,105. DOI: 10.13272/j.issn.1671-251x.17487

    WANG Qian,CAO Na. Design of output filter of mine-used high-voltage inverter for long-distance power supply[J]. Industry and Mine Automation,2019,45(12):97-100,105. DOI: 10.13272/j.issn.1671-251x.17487
    [2]
    李娜,许燕萍,何凤有. 矿山高压多电平ANPC变频调速系统损耗分析[J]. 工矿自动化,2014,40(11):61-65. DOI: 10.13272/j.issn.1671-251x.2014.11.015

    LI Na,XU Yanping,HE Fengyou. Loss analysis of frequency-conversion speed-regulation system of mine high-voltage multilevel ANPC[J]. Industry and Mine Automation,2014,40(11):61-65. DOI: 10.13272/j.issn.1671-251x.2014.11.015
    [3]
    马铭遥,凌峰,孙雅蓉,等. 三相电压型逆变器智能化故障诊断方法综述[J]. 中国电机工程学报,2020,40(23):7683-7699. DOI: 10.13334/J.0258-8013.PCSEE.201235

    MA Mingyao,LING Feng,SUN Yarong,et al. Review of intelligent fault diagnosis methods for three-phase voltage-mode inverters[J]. Proceedings of the CSEE,2020,40(23):7683-7699. DOI: 10.13334/J.0258-8013.PCSEE.201235
    [4]
    LI Haoyang,GUO Yuanbo,XIA Jinhui,et al. Open-circuit fault diagnosis for a fault-tolerant three-level neutral-point-clamped STATCOM[J]. IET Power Electronics,2019,12(4):810-816. DOI: 10.1049/iet-pel.2018.5802
    [5]
    任晓红,万红,俞啸,等. 基于Park变换的三电平逆变器开路故障诊断[J]. 工矿自动化,2020,46(5):82-86,93. DOI: 10.13272/j.issn.1671-251x.17523

    REN Xiaohong,WAN Hong,YU Xiao,et al. Open-circuit fault diagnosis of three-level inverter based on Park transformation[J]. Industry and Mine Automation,2020,46(5):82-86,93. DOI: 10.13272/j.issn.1671-251x.17523
    [6]
    万红,任晓红,范晋瑜,等. 三电平逆变器开路故障诊断研究[J]. 工矿自动化,2020,46(4):66-74. DOI: 10.13272/j.issn.1671-251x.2019070045

    WAN Hong,REN Xiaohong,FAN Jinyu. Research on open-circuit fault diagnosis of three-level inverter[J]. Industry and Mine Automation,2020,46(4):66-74. DOI: 10.13272/j.issn.1671-251x.2019070045
    [7]
    吴传龙,陈伟,刘晓文,等. 基于特征融合的提升机逆变器故障诊断[J]. 工矿自动化,2021,47(5):46-51. DOI: 10.13272/j.issn.1671-251x.17772

    WU Chuanlong,CHEN Wei,LIU Xiaowen,et al. Feature fusion based fault diagnosis of hoist inverter[J]. Industry and Mine Automation,2021,47(5):46-51. DOI: 10.13272/j.issn.1671-251x.17772
    [8]
    SZCZESNY R, KURZYNSKI P, PIQUEB H, et al. Knowledge-based system approach to power electronic systems fault diagnosis[C]. Proceedings of the IEEE International Symposium on Industrial Electronics, 1996: 1005-1010.
    [9]
    付娟娟. 基于神经网络的有源中点箝位型三电平逆变器故障诊断系统研究[D]. 徐州: 中国矿业大学, 2016.

    FU Juanjuan. Study on the fault diagnosis system of active neutral point clamped three level inverter based on neural network[D]. Xuzhou: China University of Mining and Technology, 2016.
    [10]
    姜媛媛,王友仁,吴祎,等. 基于小波包能量谱和 ELM 的光伏逆变器多故障在线诊断[J]. 仪器仪表学报,2015,36(9):2145-2152. DOI: 10.3969/j.issn.0254-3087.2015.09.029

    JIANG Yuanyuan,WANG Youren,WU Yi,et al. Online multiple fault diagnosis for PV inverter based on wavelet packet energy spectrum and extreme learning machine[J]. Chinese Journal of Scientific Instrument,2015,36(9):2145-2152. DOI: 10.3969/j.issn.0254-3087.2015.09.029
    [11]
    张程. 三电平逆变器故障诊断技术与容错控制策略研究[D]. 徐州: 中国矿业大学, 2019.

    ZHANG Cheng. Research on fault diagnosis technology and fault tolerant control strategy of the three-level inverter[D]. Xuzhou: China University of Mining and Technology, 2019.
    [12]
    阳瑞霖,何葵东,胡蝶,等. 基于振动信号EMD分解与支持向量机的有载分接开关机械故障诊断[J]. 变压器,2022,59(7):29-33. DOI: 10.19487/j.cnki.1001-8425.2022.07.007

    YANG Ruilin,HE Kuidong,HU Die,et al. Mechanical fault diagnosis of on-load tap-changer based on EMD decomposition of vibration signal and support vector machine[J]. Transformer,2022,59(7):29-33. DOI: 10.19487/j.cnki.1001-8425.2022.07.007
    [13]
    何婷,乔俊强,包建勤,等. 基于EMD和SVM的电力系统故障分类识别[J]. 仪表技术,2022(4):64-69. DOI: 10.19432/j.cnki.issn1006-2394.2022.04.001

    HE Ting,QIAO Junqiang,BAO Jianqin,et al. Fault classification in power system using EMD and SVM[J]. Instrumentation Technology,2022(4):64-69. DOI: 10.19432/j.cnki.issn1006-2394.2022.04.001
    [14]
    李克海. 基于PNN的电力变压器故障诊断方法[J]. 工业仪表与自动化,2014(4):66-69.

    LI Kehai. Method of power transformer fault diagnosis based on PNN[J]. Industrial Instrumentation & Automation,2014(4):66-69.
    [15]
    安源,张智恒. 基于PNN的电力变压器故障诊断[J]. 电气应用,2020,39(11):12-17.

    AN Yuan,ZHANG Zhiheng. Fault diagnosis of power transformer based on PNN[J]. Electrotechnical Application,2020,39(11):12-17.
  • Related Articles

    [1]ZHONG Xiaoyong, CHEN Ke'an, ZHANG Xiaohong. Steel wire rope defect magnetic flux leakage detection method based on improved complementary ensemble empirical mode decomposition[J]. Journal of Mine Automation, 2022, 48(7): 118-124. DOI: 10.13272/j.issn.1671-251x.2022020037
    [2]JING Haixiang, HUANG Yourui, XU Shanyong, TANG Chaoli. Research on the predictive fault diagnosis of mine ventilator based on digital twin and probabilistic neural network[J]. Journal of Mine Automation, 2021, 47(11): 53-60. DOI: 10.13272/j.issn.1671-251x.17852
    [3]JU Chen, ZHANG Chao, FAN Hongwei, ZHANG Xuhui, YANG Yiqing, YAN Yang. Rolling bearing fault diagnosis based on wavelet packet decomposition and PSO-BPN[J]. Journal of Mine Automation, 2020, 46(8): 70-74. DOI: 10.13272/j.issn.1671-251x.2019120022
    [4]REN Xiaohong, WAN Hong, YU Xiao, DING Enjie. Open-circuit fault diagnosis of three-level inverter based on Park transformatio[J]. Journal of Mine Automation, 2020, 46(5): 82-86. DOI: 10.13272/j.issn.1671-251x.17523
    [5]SUN Mingbo, MA Qiuli, ZHANG Yanliang, LEI Junhui. Fault diagnosis method for rolling bearing of shearer based on HGWO-MSVM[J]. Journal of Mine Automation, 2018, 44(3): 81-86. DOI: 10.13272/j.issn.1671-251x.2017110006
    [6]SUN Huiying, LIN Zhongpeng, HUANG Can, CHEN Peng. Fault diagnosis of mine ventilator based on improved BP neural network[J]. Journal of Mine Automation, 2017, 43(4): 37-41. DOI: 10.13272/j.issn.1671-251x.2017.04.009
    [7]HAN Sai, LU Jianjun, WEI Chen, LIU Zhipeng. Research of classification method of materials and equipments of coal enterprise based on probabilistic neural network[J]. Journal of Mine Automation, 2014, 40(4): 38-41. DOI: 10.13272/j.issn.1671-251x.2014.04.009
    [8]ZHENG Xiao-qian, HU Shi-qiang, WU Jian. Research of fault diagnosis and prediction for diesel engine based on probabilistic neural network[J]. Journal of Mine Automation, 2013, 39(9): 104-108. DOI: 10.7526/j.issn.1671-251X.2013.09.027
    [9]WANG Qing-liang, DU Hui, ZHAO Yi-jie, LI Lu, ZHONG Ming-sheng. Line selection method with transient state based on intrinsic mode energy[J]. Journal of Mine Automation, 2013, 39(9): 92-95. DOI: 10.7526/j.issn.1671-251X.2013.09.024
    [10]ZHENG Chen, WANG Xiao-wei, LIU Ya-juan, TIAN Shu. A novel fault line selection method based on empirical mode decomposition and differential spectrum[J]. Journal of Mine Automation, 2013, 39(2): 75-79.
  • Cited by

    Periodical cited type(2)

    1. 高杨,张培航. 可再生能源并网逆变器通信自动化监控方法研究. 长江信息通信. 2024(08): 60-61+64 .
    2. 杨铭轩,刘轩,彭纬伟,陈云云. 基于深度学习的水轮机运转状态识别系统研究. 自动化与仪器仪表. 2023(03): 190-194 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (139) PDF downloads (21) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return