Citation: | REN Wei. A fully mechanized working face inspection system based on SLAM and virtual reality[J]. Journal of Mine Automation,2023,49(5):59-65. DOI: 10.13272/j.issn.1671-251x.18076 |
[1] |
王国法,范京道,徐亚军,等. 煤炭智能化开采关键技术创新进展与展望[J]. 工矿自动化,2018,44(2):5-12.
WANG Guofa,FAN Jingdao,XU Yajun,et al. Innovation progress and prospect on key technologies of intelligent coal mining[J]. Industry and Mine Automation,2018,44(2):5-12.
|
[2] |
张守祥,张学亮,张磊,等. 综采巡检机器人关键技术研究[J]. 煤炭科学技术,2022,50(1):247-255.
ZHANG Shouxiang,ZHANG Xueliang,ZHANG Lei,et al. Research on key technology of patrol robot in fully-mechanized mining face[J]. Coal Science and Technology,2022,50(1):247-255.
|
[3] |
梁占泽. 矿用带式输送机巡检机器人驱动系统设计[J]. 工矿自动化,2021,47(4):108-112. DOI: 10.13272/j.issn.1671-251x.2021010003
LIANG Zhanze. Driving system design of inspection robot for mine belt conveyor[J]. Industry and Mine Automation,2021,47(4):108-112. DOI: 10.13272/j.issn.1671-251x.2021010003
|
[4] |
毛浩,薛忠新,范生军,等. 张家峁煤矿回风巷道智能巡检机器人系统[J]. 煤矿安全,2021,52(7):107-111. DOI: 10.13347/j.cnki.mkaq.2021.07.019
MAO Hao,XUE Zhongxin,FAN Shengjun,et al. Intelligent inspection robot system for return air roadway in Zhangjiamao Coal Mine[J]. Safety in Coal Mines,2021,52(7):107-111. DOI: 10.13347/j.cnki.mkaq.2021.07.019
|
[5] |
商德勇,崔栓伟,周丹,等. 薄煤层巡检机器人行走机构跨沟性能分析及试验研究[J]. 煤炭工程,2017,49(4):136-138.
SHANG Deyong,CUI Shuanwei,ZHOU Dan,et al. Ditch-crossing performance analysis and experimental study on inspection robot walking mechanism in thin coal seam[J]. Coal Engineering,2017,49(4):136-138.
|
[6] |
张树生,马静雅,岑强,等. 煤矿综采工作面巡检机器人系统研究[J]. 煤炭科学技术,2019,47(10):136-140.
ZHANG Shusheng,MA Jingya,CEN Qiang,et al. Research on inspection robot system for fully-mechanized mining face in coal mine[J]. Coal Science and Technology,2019,47(10):136-140.
|
[7] |
李森,王峰,刘帅,等. 综采工作面巡检机器人关键技术研究[J]. 煤炭科学技术,2020,48(7):218-225.
LI Sen,WANG Feng,LIU Shuai,et al. Study on key technology of patrol robots for fully-mechanized mining face[J]. Coal Science and Technology,2020,48(7):218-225.
|
[8] |
郝勇,袁智. 综采工作面自动巡检机器人系统设计[J]. 煤炭科学技术,2020,48(8):145-149. DOI: 10.13199/j.cnki.cst.2020.08.018
HAO Yong,YUAN Zhi. Design of automatic inspection robot system for fully-mechanized coal mining face[J]. Coal Science and Technology,2020,48(8):145-149. DOI: 10.13199/j.cnki.cst.2020.08.018
|
[9] |
YASHIN G A, TRINITATOVA D, AGISHEV R T, et al. Aerovr: virtual reality-based teleoperation with tactile feedback for aerial manipulation[C]. The 19th International Conference on Advanced Robotics, Belo Horizonte, 2019: 767-772.
|
[10] |
BARENTINE C, MCNAY A, PFAFFENBICHLER R, et al. A VR teleoperation suite with manipulation assist[C]. The 16th ACM/IEEE International Conference on Human-Robot Interaction, Boulder, 2021: 442-446.
|
[11] |
GUZZI J, ABBATE G, PAOLILLO A, et al. Interacting with a conveyor belt in virtual reality using pointing gestures[C]. The 17th ACM/IEEE International Conference on Human-Robot Interaction, Sapporo, 2022: 1194-1195.
|
[12] |
KENNEL-MAUSHART F, PORANNE R, COROS S. Multi-arm payload manipulation via mixed reality[C]. International Conference on Robotics and Automation, Philadelphia, 2022. DOI: 10.1109/ICRA46639.2022.9811580.
|
[13] |
KUO C-Y, HUANG C-C, TSAI C-H, et al. Development of an immersive SLAM-based VR system for teleoperation of a mobile manipulator in an unknown environment[J]. Computers in Industry, 2021, 132. DOI: 10.1016/j.compind.2021.103502.
|
[14] |
WONSICK M, KELEȘTEMUR T, ALT S, et al. Telemanipulation via virtual reality interfaces with enhanced environment models[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, Prague, 2021: 2999-3004.
|
[15] |
迟焕磊,袁智,曹琰,等. 基于数字孪生的智能化工作面三维监测技术研究[J]. 煤炭科学技术,2021,49(10):153-161.
CHI Huanlei,YUAN Zhi,CAO Yan,et al. Study on digital twin-based smart fully-mechanized coal mining workface monitoring technology[J]. Coal Science and Technology,2021,49(10):153-161.
|
[16] |
李首滨,李森,张守祥,等. 综采工作面智能感知与智能控制关键技术与应用[J]. 煤炭科学技术,2021,49(4):28-39. DOI: 10.13199/j.cnki.cst.2021.04.004
LI Shoubin,LI Sen,ZHANG Shouxiang,et al. Key technology and application of intelligent perception and intelligent control in fully mechanized mining face[J]. Coal Science and Technology,2021,49(4):28-39. DOI: 10.13199/j.cnki.cst.2021.04.004
|
[17] |
杨生华,周永昌,芮丰,等. 薄煤层开采与成套装备技术的发展趋势[J]. 煤炭科学技术,2020,48(3):49-58. DOI: 10.13199/j.cnki.cst.2020.03.003
YANG Shenghua,ZHOU Yongchang,RUI Feng,et al. Development trend of thin coal seam mining and complete equipment technology[J]. Coal Science and Technology,2020,48(3):49-58. DOI: 10.13199/j.cnki.cst.2020.03.003
|
[18] |
亓玉浩,关士远. 基于激光SLAM的综采工作面实时三维建图方法[J]. 工矿自动化,2022,48(11):139-144. DOI: 10.13272/j.issn.1671-251x.2022060047
QI Yuhao,GUAN Shiyuan. Real-time 3D mapping method of fully mechanized working face based on laser SLAM[J]. Journal of Mine Automation,2022,48(11):139-144. DOI: 10.13272/j.issn.1671-251x.2022060047
|
[19] |
任伟. 综采工作面多目全景摄像仪的研制与应用[J]. 煤炭工程,2022,54(12):102-108.
REN Wei. Development and application of multi view panoramic camera in fully mechanized mining face[J]. Coal Engineering,2022,54(12):102-108.
|
[20] |
CHENG Xianwei, ZHAO Hui, KANDEMIR M, et al. AMOEBA: a coarse grained reconfigurable architecture for dynamic GPU scaling[C]. The 34th ACM International Conference on Supercomputing, 2020: 1-13. DOI: 10.1145/3392717.3392738.
|
[21] |
CHENG Xianwei, ZHAO Hui, KANDEMIR M, et al. Alleviating bottlenecks for DNN execution on GPUs via opportunistic computing[C]. The 21st International Symposium on Quality Electronic Design, Santa Clara, 2020. DOI: 10.1109/ISQED48828.2020.9136967.
|
[22] |
KIRK D B, HWU W-M W. Programming massively parallel processors[M]. 3rd ed. San Francisco: Morgan Kaufmann, 2016.
|