MA Liang, GAO Liang, LIAN Boxiang, et al. High-precision 3D point cloud modeling method for coal mine roadways based on known point constraints[J]. Journal of Mine Automation,2024,50(11):78-83, 151. DOI: 10.13272/j.issn.1671-251x.2024080093
Citation: MA Liang, GAO Liang, LIAN Boxiang, et al. High-precision 3D point cloud modeling method for coal mine roadways based on known point constraints[J]. Journal of Mine Automation,2024,50(11):78-83, 151. DOI: 10.13272/j.issn.1671-251x.2024080093

High-precision 3D point cloud modeling method for coal mine roadways based on known point constraints

More Information
  • Received Date: August 30, 2024
  • Revised Date: November 24, 2024
  • Available Online: December 01, 2024
  • In response to the complex conditions such as poor lighting, weak texture, and high concentrtaions of dust in underground coal mines, the existing 3D modeling methods for coal mine roadways have the disadvantages of high costs, poor timeliness, and low accuracy. A high-precision 3D point cloud modeling method for coal mine roadways based on known point constraints was proposed. The LiDAR point cloud data was downsampled by voxel filter, followed by the use of iterative closest point (ICP) matching for the downsampled LiDAR point cloud data to extract local point cloud maps. The point cloud data was then distortion-corrected using inertial measurement unit (IMU) data. ICP was utilized to align the local point cloud maps with the distortion-corrected point cloud maps, improving the accuracy and efficiency of front-end registration. Loopback detection was incorporated in the back-end to enhance the accuracy of coal mine roadway localization and mapping. The coordinates of the known points of the coal mine roadways were obtained through control measurements using connecting traverse, providing global constraints for point cloud modeling. A combined adjustment calculation was performed on the known points and the station points determined by LiDAR simultaneous localization and mapping (SLAM). The station point coordinates were corrected, and a nonlinear optimization method was further employed to adjust the global point cloud map coordinates, thereby improving the accuracy of 3D point cloud modeling. Experimental results demonstrated that the 3D point cloud map of coal mine roadways constructed by this method had high global consistency and geometric structure authenticity, achieving high localization and mapping accuracy in underground coal mines.

  • [1]
    王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41.

    WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41.
    [2]
    高毅楠,姚顽强,蔺小虎,等. 煤矿井下多重约束的视觉SLAM关键帧选取方法[J]. 煤炭学报,2024,49(增刊1):472-482.

    GAO Yinan,YAO Wanqiang,LIN Xiaohu,et al. Visual SLAM keyframe selection method with multiple constraints in underground coal mines[J]. Journal of China Coal Society,2024,49(S1):472-482.
    [3]
    徐志强,杨邦荣,王李管,等. 巷道实体的三维建模研究与实现[J]. 计算机工程与应用,2008,44(6):202-205. DOI: 10.3778/j.issn.1002-8331.2008.06.061

    XU Zhiqiang,YANG Bangrong,WANG Liguan,et al. Laneway entity three-dimensional modeling study and realization[J]. Computer Engineering and Applications,2008,44(6):202-205. DOI: 10.3778/j.issn.1002-8331.2008.06.061
    [4]
    刘杰,连增增,何荣,等. 基于近景摄影测量技术的地下巷道三维建模[J]. 金属矿山,2020(9):179-183.

    LIU Jie,LIAN Zengzeng,HE Rong,et al. 3D modeling of underground tunnel based on close range photogrammetry technique[J]. Metal Mine,2020(9):179-183.
    [5]
    汪云甲,伏永明. 矿井巷道三维自动建模方法研究[J]. 武汉大学学报(信息科学版),2006,31(12):1097-1100. DOI: 10.3969/j.issn.1671-8860.2006.12.016

    WANG Yunjia,FU Yongming. On 3D automatic modeling method of mine roadway[J]. Geomatics and Information Science of Wuhan University,2006,31(12):1097-1100. DOI: 10.3969/j.issn.1671-8860.2006.12.016
    [6]
    徐海,罗周全,刘晓明. 复杂巷道工程三维可视化建模方法研究及应用[J]. 矿冶工程,2011,31(1):19-23. DOI: 10.3969/j.issn.0253-6099.2011.01.006

    XU Hai,LUO Zhouquan,LIU Xiaoming. Study of 3D visualization modeling methods for complex roadway engineering and its application[J]. Mining and Metallurgical Engineering,2011,31(1):19-23. DOI: 10.3969/j.issn.0253-6099.2011.01.006
    [7]
    杨林,马宏伟,王岩. 基于激光惯性融合的煤矿井下移动机器人SLAM算法[J]. 煤炭学报,2022,47(9):3523-3534.

    YANG Lin,MA Hongwei,WANG Yan. LiDAR-Inertial SLAM for mobile robot in underground coal mine[J]. Journal of China Coal Society,2022,47(9):3523-3534.
    [8]
    董志华,姚顽强,蔺小虎,等. 煤矿井下顾及特征点动态提取的激光SLAM算法研究[J]. 煤矿安全,2023,54(8):241-246.

    DONG Zhihua,YAO Wanqiang,LIN Xiaohu,et al. LiDAR SLAM algorithm considering dynamic extraction of feature points in underground coal mine[J]. Safety in Coal Mines,2023,54(8):241-246.
    [9]
    李猛钢,胡而已,朱华. 煤矿移动机器人LiDAR/IMU紧耦合SLAM方法[J]. 工矿自动化,2022,48(12):68-78.

    LI Menggang,HU Eryi,ZHU Hua. LiDAR/IMU tightly-coupled SLAM method for coal mine mobile robot[J]. Journal of Mine Automation,2022,48(12):68-78.
    [10]
    马艾强,姚顽强,蔺小虎,等. 面向煤矿巷道环境的LiDAR与IMU融合定位与建图方法[J]. 工矿自动化,2022,48(12):49-56.

    MA Aiqiang,YAO Wanqiang,LIN Xiaohu,et al. Coal mine roadway environment-oriented LiDAR and IMU fusion positioning and mapping method[J]. Journal of Mine Automation,2022,48(12):49-56.
    [11]
    KIM H,CHOI Y. Location estimation of autonomous driving robot and 3D tunnel mapping in underground mines using pattern matched LiDAR sequential images[J]. International Journal of Mining Science and Technology,2021,31(5):779-788. DOI: 10.1016/j.ijmst.2021.07.007
    [12]
    刘敬娜,徐华龙,徐正国,等. 智慧矿山工业广场三维自动建模技术研究[J]. 时空信息学报,2024,31(4):524-532.

    LIU Jingna,XU Hualong,XU Zhengguo,et al. 3D automatic modeling technology for smart mining industrial square[J]. Journal of Spatio-Temporal Information,2024,31(4):524-532.
    [13]
    WANG Jiaheng,WANG Liguan,PENG Pingan,et al. Efficient and accurate mapping method of underground metal mines using mobile mining equipment and solid-state lidar[J]. Measurement,2023,221. DOI: 10.1016/j.measurement.2023.113581.
    [14]
    刘少杰,李志海,刘治翔,等. 基于激光扫描和三维栅格地图的掘进巷道空间建模方法研究[J]. 工程设计学报,2023,30(3):306-314. DOI: 10.3785/j.issn.1006-754X.2023.00.034

    LIU Shaojie,LI Zhihai,LIU Zhixiang,et al. Research on spatial modeling method for excavation tunnels based on laser scanning and 3D grid map[J]. Chinese Journal of Engineering Design,2023,30(3):306-314. DOI: 10.3785/j.issn.1006-754X.2023.00.034
    [15]
    江记洲,郭甲腾,吴立新,等. 基于三维激光扫描点云的矿山巷道三维建模方法研究[J]. 煤矿开采,2016(2):109-113.

    JIANG Jizhou,GUO Jiateng,WU Lixin,et al. 3-D modeling method of mine roadway based on 3-D laser scanning point cloud[J]. Coal Mining Technology,2016(2):109-113.
    [16]
    GURGEL M J M,PREUSSE A. New opportunities and challenges in surveying underground cavities using photogrammetric methods[J]. International Journal of Mining Science and Technology,2021,31(1):9-13. DOI: 10.1016/j.ijmst.2020.12.005
    [17]
    BESL P J,MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256. DOI: 10.1109/34.121791
    [18]
    KIM G,KIM A. Scan context:egocentric spatial descriptor for place recognition within 3D point cloud map[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Madrid,2018:4802-4809.
    [19]
    张继贤,肖雨彤. 仙泉煤矿井下导线网设计与测量成果分析[J]. 煤炭工程,2019,51(5):163-167.

    ZHANG Jixian,XIAO Yutong. Underground traverse network design and analysis of measurement results in Xianquan Coal Mine[J]. Coal Engineering,2019,51(5):163-167.
    [20]
    SHAN Tixiao,ENGLOT B. LeGO-LOAM:lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Madrid,2018:4758-4765.
    [21]
    SHAN Tixiao,ENGLOT B,MEYERS D,et al. LIO-SAM:tightly-coupled lidar inertial odometry via smoothing and mapping[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Las Vegas,2020:5135-5142.
  • Related Articles

    [1]HU Qingsong, LI Jingwen, ZHANG Yuansheng, LI Shiyin, SUN Yanjing. IMU-LiDAR integrated SLAM technology for unmanned driving in mines[J]. Journal of Mine Automation, 2024, 50(10): 21-28. DOI: 10.13272/j.issn.1671-251x.18209
    [2]MA Aiqiang, YAO Wanqiang. Multi sensor adaptive fusion SLAM method for underground mobile robots in coal mines[J]. Journal of Mine Automation, 2024, 50(5): 107-117. DOI: 10.13272/j.issn.1671-251x.2024050031
    [3]GAO Haiyue, WANG Kai, WANG Baobing, WANG Dandan. Positioning method for underground unmanned aerial vehicles in coal mines based on global point cloud map[J]. Journal of Mine Automation, 2023, 49(8): 81-87, 133. DOI: 10.13272/j.issn.1671-251x.2022110024
    [4]ZOU Xiaoyu, HUANG Xinmiao, WANG Zhongbin, FANG Dongsheng, PAN Jie, SI Lei. 3D map construction of coal mine roadway mobile robot based on integrated factor graph optimization[J]. Journal of Mine Automation, 2022, 48(12): 57-67, 92. DOI: 10.13272/j.issn.1671-251x.2022100041
    [5]QI Yuhao, GUAN Shiyuan. Real-time 3D mapping method of fully mechanized working face based on laser SLAM[J]. Journal of Mine Automation, 2022, 48(11): 139-144. DOI: 10.13272/j.issn.1671-251x.2022060047
    [6]CUI Wen, XUE Qiwen, LI Qingling, WANG Fengdong, HAO Xueer. Unmanned vehicle fusion positioning method based on 3D point cloud map and ESKF[J]. Journal of Mine Automation, 2022, 48(9): 116-122. DOI: 10.13272/j.issn.1671-251x.17997
    [7]XU Shichang, CHENG Gang, YUAN Dunpeng, SUN Xu, JIN Zujin, LI Yong. Belt conveyor deviation and coal stacking monitoring method based on three-dimensional point cloud[J]. Journal of Mine Automation, 2022, 48(9): 8-15, 24. DOI: 10.13272/j.issn.1671-251x.17948
    [8]WANG Li-li. 3D Implementation of SVG[J]. Journal of Mine Automation, 2012, 38(12): 33-36.
    [9]SHU Li-chu. 3D Visualization Platform of Mine Based on 3D GIS[J]. Journal of Mine Automation, 2011, 37(6): 7-11.
    [10]GUO Ju. Design of 3D Virtual Mine Based on 3D GIS Technology[J]. Journal of Mine Automation, 2007, 33(5): 1-4.
  • Cited by

    Periodical cited type(33)

    1. 曾庆良,雷小万,孟昭胜,万丽荣,班新亮,胡雨龙. 基于运动姿态感知的综放支架主动控顶空间研究. 煤炭学报. 2025(01): 645-660 .
    2. 陈湘源. 综采工作面轨迹测量与直线度控制方法. 矿业研究与开发. 2024(03): 185-191 .
    3. 马宏伟,赵英杰,薛旭升,吴海雁,毛清华,杨会武,张旭辉,车万里,曹现刚,赵友军,王川伟,赵亦辉,王鹏,孙思雅,马柯翔,李烺. 智能采煤机器人关键技术. 煤炭学报. 2024(02): 1174-1182 .
    4. 刘相通,李曼,沈思怡,曹现刚,刘俊祺. 液压支架关键姿态参数测量系统. 工矿自动化. 2024(04): 41-49 . 本站查看
    5. 高思伟,谷敏永,李殿鹏. 综采工作面液压支架测高传感器设计. 工矿自动化. 2024(06): 129-135 . 本站查看
    6. 左权. 工作面液压支架自适应对齐控制系统设计及应用. 矿业装备. 2024(08): 106-108 .
    7. 曾庆良,班新亮,孟昭胜,万丽荣,雷小万. 基于Unity3D的工作面液压支架群组空间支护姿态数字孪生重构方法. 煤炭科学技术. 2024(11): 74-88 .
    8. 崔宽宽. 煤矿井下液压支架位姿监测装置. 机械制造. 2024(12): 86-88 .
    9. 王国法,张良,李首滨,李森,冯银辉,孟令宇,南柄飞,杜明,付振,李然,王峰,刘清,王丹丹. 煤矿无人化智能开采系统理论与技术研发进展. 煤炭学报. 2023(01): 34-53 .
    10. 文治国. 四柱支撑掩护式液压支架支护状态分析计算. 煤矿机械. 2023(04): 23-26 .
    11. 巩师鑫,赵国瑞,王飞. 机器视觉感知理论与技术在煤炭工业领域应用进展综述. 工矿自动化. 2023(05): 7-21 . 本站查看
    12. 李建,任怀伟,巩师鑫. 综采工作面液压支架状态感知与分析技术研究. 工矿自动化. 2023(10): 1-7+103 . 本站查看
    13. 任怀伟,李帅帅,赵国瑞,张科学,杜明,周杰. 基于深度视觉原理的工作面液压支架支撑高度与顶梁姿态角测量方法研究. 采矿与安全工程学报. 2022(01): 72-81+93 .
    14. 张帅,任怀伟,韩安,巩师鑫. 复杂条件工作面智能化开采关键技术及发展趋势. 工矿自动化. 2022(03): 16-25 . 本站查看
    15. 鲍江峰. 液压支架协同方案设计. 机械管理开发. 2022(02): 9-11 .
    16. 乔佳伟,贾运红,王强. 基于改进粒子群算法的煤矿井下相机参数优化. 煤炭技术. 2022(04): 119-122 .
    17. 赵忠证,李元泽,张旭辉,毛清华. 纳林河二矿自动化综采工作面组织方式与产能优化. 陕西煤炭. 2022(03): 139-143 .
    18. 王裕,史艳楠,王毅颖,齐朋磊,王翰秋. 固体充填液压支架全位姿测量及虚拟仿真. 工矿自动化. 2022(07): 81-89 . 本站查看
    19. 宋单阳,卢春贵,陶心雅,杨金衡,王培恩,郑文强,宋建成. 基于最大熵卡尔曼滤波算法的液压支架调直方法. 工矿自动化. 2022(11): 119-124 . 本站查看
    20. 卢春贵,宋单阳,宋建成,许春雨,杨金衡. 基于捷联惯导的刮板输送机布置形态检测方法的研究. 煤炭技术. 2022(12): 205-208 .
    21. 葛世荣. 采煤机技术发展历程(九)——环境感知技术. 中国煤炭. 2021(02): 1-17 .
    22. 王宇卓,常宗旭,高飞,廉自生. 液压支架的调直方法研究. 机电工程. 2021(05): 645-649 .
    23. 廖华. 铲车自动计量系统溜井倒矿防作弊的设计与应用. 采矿技术. 2021(04): 147-149 .
    24. 程晋凯. 液压支架自适应对齐方案研究. 机械管理开发. 2021(07): 288-290 .
    25. 梁云峰,关伟,朱超,刘慧,张旭辉. 蒙大纳林河矿中厚煤层综采工作面智能化技术研究. 矿山机械. 2021(10): 12-15 .
    26. 荣耀,安晓宇. 智能化开采中视频信息的应用现状及展望. 煤炭科学技术. 2021(S1): 119-123 .
    27. 张超,张旭辉,杜昱阳,杨文娟,张楷鑫. 基于双目视觉的悬臂式掘进机位姿测量技术研究. 煤炭科学技术. 2021(11): 225-235 .
    28. 任怀伟,赵国瑞,周杰,文治国,丁艳,李帅帅. 智能开采装备全位姿测量及虚拟仿真控制技术. 煤炭学报. 2020(03): 956-971 .
    29. 屈霞,贡启明. 基于视觉测量的人防门位置检测方法. 计算机测量与控制. 2020(04): 57-61+109 .
    30. 张树楠,曹现刚,崔亚仲,罗璇,张国祯. 基于多传感器的液压支架直线度测量方法研究. 煤矿机械. 2020(04): 56-59 .
    31. 李帅帅,任怀伟. 综采工作面“三机”设备位姿测量技术研究现状与展望. 煤炭科学技术. 2020(09): 218-226 .
    32. 张凯,田原,贾曲. 机器视觉在煤机装备中的应用现状与趋势. 煤矿机械. 2020(12): 123-125 .
    33. 许金星. 机器视觉的液压支架姿态角度测量系统设计. 煤矿机械. 2019(09): 11-13 .

    Other cited types(21)

Catalog

    Article Metrics

    Article views (576) PDF downloads (38) Cited by(54)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return