HU Qingsong, LI Jingwen, ZHANG Yuansheng, et al. IMU-LiDAR integrated SLAM technology for unmanned driving in mines[J]. Journal of Mine Automation,2024,50(10):21-28. DOI: 10.13272/j.issn.1671-251x.18209
Citation: HU Qingsong, LI Jingwen, ZHANG Yuansheng, et al. IMU-LiDAR integrated SLAM technology for unmanned driving in mines[J]. Journal of Mine Automation,2024,50(10):21-28. DOI: 10.13272/j.issn.1671-251x.18209

IMU-LiDAR integrated SLAM technology for unmanned driving in mines

More Information
  • Received Date: July 10, 2024
  • Revised Date: October 15, 2024
  • Available Online: November 10, 2024
  • Simultaneous localization and mapping (SLAM) is a critical technology for unmanned driving. Existing SLAM methods have the drawbacks of significant cumulative errors and drift in coal mine roadway environment. In this study, a roadway environment feature-assisted SLAM algorithm integrating inertial measurement unit (IMU) and LiDAR was proposed. IMU observation data was used to predict the motion state of point cloud and motion compensation was applied to reduce point cloud distortion caused by equipment movement. Pose transformation information from LiDAR odometry was obtained through point cloud registration, forming a LiDAR odometry constraint. Point clouds from roadway sidewalls and floor were extracted and fitted to planes, establishing environmental constraints. Using IMU pre-integration constraints, LiDAR odometry constraints, and environmental constraints, the algorithm applied factor graph optimization to achieve tight coupling between LiDAR and IMU, enabling high-precision 3D reconstruction of roadway scenes and accurate localization of autonomous vehicles. Simulation experiments showed that the absolute trajectory root mean square error (RMSE) of the roadway environment feature-assisted IMU-LiDAR integrated SLAM algorithm was 0.1162 m, and the relative trajectory RMSE was 0.0409 m, improving positioning accuracy compared to commonly used algorithms such as LeGO-LOAM and LIO-SAM. Based on the test results in a real environment, the algorithm provides excellent mapping performance with no drift or trailing, demonstrating strong environmental adaptability and robustness.
  • [1]
    胡青松,孟春蕾,李世银,等. 矿井无人驾驶环境感知技术研究现状及展望[J]. 工矿自动化,2023,49(6):128-140.

    HU Qingsong,MENG Chunlei,LI Shiyin,et al. Research status and prospects of perception technology for unmanned mining vehicle driving environment[J]. Journal of Mine Automation,2023,49(6):128-140.
    [2]
    陈善有,郭洋,田斌,等. 国内外露天矿山无人驾驶研究现状分析与发展前景[J]. 现代矿业,2023,39(12):12-16.

    CHEN Shanyou,GUO Yang,TIAN Bin,et al. Analysis of current research status and development prospects of unmanned driving in open-pit mines at home and abroad[J]. Modern Mining,2023,39(12):12-16.
    [3]
    危双丰,庞帆,刘振彬,等. 基于激光雷达的同时定位与地图构建方法综述[J]. 计算机应用研究,2020,37(2):327-332.

    WEI Shuangfeng,PANG Fan,LIU Zhenbin,et al. Survey of LiDAR-based SLAM algorithm[J]. Application Research of Computers,2020,37(2):327-332.
    [4]
    张新,徐建华,陈彤,等. 面向重大自然灾害的救援装备研究现状及发展趋势[J]. 科学技术与工程,2021,21(25):10552-10565. DOI: 10.3969/j.issn.1671-1815.2021.25.002

    ZHANG Xin,XU Jianhua,CHEN Tong,et al. Research status and development trend of rescue equipment for major natural disasters[J]. Science Technology and Engineering,2021,21(25):10552-10565. DOI: 10.3969/j.issn.1671-1815.2021.25.002
    [5]
    蒋济州,徐文福,潘尔振. 仿生扑翼飞行机器人自主导航系统研究进展[J]. 仪器仪表学报,2023,44(11):66-84.

    JIANG Jizhou,XU Wenfu,PAN Erzhen. Survey on autonomous navigation systems of bionic flapping-wing flying robot[J]. Chinese Journal of Scientific Instrument,2023,44(11):66-84.
    [6]
    周治国,曹江微,邸顺帆. 3D激光雷达SLAM算法综述[J]. 仪器仪表学报,2021,42(9):13-27.

    ZHOU Zhiguo,CAO Jiangwei,DI Shunfan. Overview of 3D lidar SLAM algorithms[J]. Chinese Journal of Scientific Instrument,2021,42(9):13-27.
    [7]
    聂明炎,杨诚. 一种LiDAR平面配准方法辅助的IMU室内定位算法[J]. 测绘地理信息,2021,46(5):27-30.

    NIE Mingyan,YANG Cheng. An IMU indoor location algorithm assisted by LiDAR plane registration method[J]. Journal of Geomatics,2021,46(5):27-30.
    [8]
    ZHANG Ji,SINGH S. Low-drift and real-time lidar odometry and mapping[J]. Autonomous Robots,2017,41:401-416 . DOI: 10.1007/s10514-016-9548-2
    [9]
    TANG Jian,CHEN Yuwei,NIU Xiaoji,et al. LiDAR scan matching aided inertial navigation system in GNSS-denied environments[J]. Sensors,2015,15(7):16710-16728. DOI: 10.3390/s150716710
    [10]
    FRANK S A B D G. Tight coupling of laser scanner and inertial measurements for a fully autonomous relative navigation solution[J]. Navigation,2007,54(3):189-205. DOI: 10.1002/j.2161-4296.2007.tb00404.x
    [11]
    马艾强,姚顽强,蔺小虎,等. 面向煤矿巷道环境的LiDAR与IMU融合定位与建图方法[J]. 工矿自动化,2022,48(12):49-56.

    MA Aiqiang,YAO Wanqiang,LIN Xiaohu,et al. Coal mine roadway environment-oriented LiDAR and IMU fusion positioning and mapping method[J]. Journal of Mine Automation,2022,48(12):49-56.
    [12]
    李猛钢,胡而已,朱华. 煤矿移动机器人LiDAR/IMU紧耦合SLAM方法[J]. 工矿自动化,2022,48(12):68-78.

    LI Menggang,HU Eryi,ZHU Hua. LiDAR/IMU tightly-coupled SLAM method for coal mine mobile robot[J]. Journal of Mine Automation,2022,48(12):68-78.
    [13]
    杨林,马宏伟,王岩. 基于激光惯性融合的煤矿井下移动机器人SLAM算法[J]. 煤炭学报,2022,47(9):3523-3534.

    YANG Lin,MA Hongwei,WANG Yan. LiDAR-inertial SLAM for mobile robot in underground coal mine[J]. Journal of China Coal Society,2022,47(9):3523-3534.
    [14]
    GENTIL C L,VIDAL-CALLEJA T,HUANG S. IN2LAMA:inertial lidar localisation and mapping[C]. International Conference on Robotics and Automation,Montreal,2019:6388-6394.
    [15]
    SHAN Tixiao,ENGLOT B,MEYERS D,et al. LIO-SAM:tightly-coupled lidar inertial odometry via smoothing and map[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Las Vegas,2020:5135-5142.
    [16]
    RANGANATHAN A. The levenberg-marquardt algorithm[J]. Tutoral on LM Algorithm,2004,11(1):101-110.
    [17]
    DERPANIS K G. Overview of the RANSAC algorithm[J]. Image Rochester NY,2010,4(1):2-3.
    [18]
    LENG Zhixin,LI Shu,LI Xin,et al. An improved fast ground segmentation algorithm for 3D point cloud[C]. Chinese Control and Decision Conference,Hefei,2020:5016-5020.
    [19]
    SHAN Tixiao,ENGLOT B. LeGO-LOAM:lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Madrid,2018. DOI: 10.1109/IROS.2018.8594299.
    [20]
    秦学斌,王炳,景宁波,等. 基于矿区巷道巡检机器人的LOAM-SLAM地图重建改进算法的研究[J]. 金属矿山,2022(4):163-168.

    QIN Xuebin,WANG Bing,JIN Ningbo,et al. Research on improved algorithm of LOAM-SLAM map reconstruction based on mine roadway inspection robot[J]. Metal Mine,2022(4):163-168.
  • Related Articles

    [1]WANG Xueming, HUANG Jingzhi, SONG Chuanzhi, WU Daifeng. Locking control of underground signal lights based on improved Kalman filter and state observer[J]. Journal of Mine Automation, 2024, 50(11): 118-126, 141. DOI: 10.13272/j.issn.1671-251x.2024080066
    [2]LI Guihu, GAO Guijun, LI Junxia, JIA Xuefeng. A pose recognition method for warehouse cleaning robots based on extended Kalman filtering[J]. Journal of Mine Automation, 2024, 50(5): 99-106. DOI: 10.13272/j.issn.1671-251x.2024020004
    [3]LI Chengcheng, MA Lisen, TIAN Yuan, JIA Yunhong, JIA Qu, TIAN Weiqin, ZHANG Kai. An onboard video stabilization algorithm for roadheader based on CLAHE and Kalman filter[J]. Journal of Mine Automation, 2023, 49(5): 66-73. DOI: 10.13272/j.issn.1671-251x.2022100002
    [4]SONG Danyang, LU Chungui, TAO Xinya, YANG Jinheng, WANG Pei'en, ZHENG Wenqiang, SONG Jiancheng. Hydraulic support straightening method based on maximum correntropy Kalman filtering algorithm[J]. Journal of Mine Automation, 2022, 48(11): 119-124. DOI: 10.13272/j.issn.1671-251x.2022020030
    [5]LI Shiyin, ZHU Yuan, WANG Xiaoming. Improved TDOA algorithm for underground positioning considering anchor position error[J]. Journal of Mine Automation, 2019, 45(11): 10-13. DOI: 10.13272/j.issn.1671-251x.17486
    [6]SUN Zhexing , WANG Yanwen. Two-dimensional accurate personnel positioning method in underground coal mine based on Kalman filter[J]. Journal of Mine Automation, 2018, 44(5): 31-35. DOI: 10.13272/j.issn.1671-251x.17318
    [7]WANG Feng, SHANG Chao, JI Jincheng, NIE Baisheng, QIAO Tiezhu, ZHANG Xueying. Three-dimensional positioning algorithm based on TDOA and AOA in coal mine underground[J]. Journal of Mine Automation, 2015, 41(5): 78-82. DOI: 10.13272/j.issn.1671-251x.2015.05.019
    [8]ZHANG Lingtao, ZHANG Hui. Measurement algorithm of heading angle of roadheader based on Kalman filter[J]. Journal of Mine Automation, 2014, 40(11): 100-103. DOI: 10.13272/j.issn.1671-251x.2014.11.024
    [9]LUO Yu-feng, LIU Yong, LI Fang. Application of Kalman filter in underground personnel tracking and positioning[J]. Journal of Mine Automation, 2013, 39(9): 54-58. DOI: 10.7526/j.issn.1671-251X.2013.09.015
    [10]WANG Sha-sha, LOU Gao-feng, TANG Xia, SHI Li-ping, ZHANG En-feng. State of charge estimation of battery in mine-used movable lifesaving cabin based on extended Kalman filtering method[J]. Journal of Mine Automation, 2013, 39(2): 43-47.
  • Cited by

    Periodical cited type(0)

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1330) PDF downloads (74) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return