TAN Zhanglu, WANG Meijun, YE Zihan. Research on intelligent coal mine data governance system and key issues[J]. Journal of Mine Automation,2023,49(5):22-29. DOI: 10.13272/j.issn.1671-251x.18104
Citation: TAN Zhanglu, WANG Meijun, YE Zihan. Research on intelligent coal mine data governance system and key issues[J]. Journal of Mine Automation,2023,49(5):22-29. DOI: 10.13272/j.issn.1671-251x.18104

Research on intelligent coal mine data governance system and key issues

More Information
  • Received Date: April 09, 2023
  • Revised Date: April 25, 2023
  • Available Online: May 15, 2023
  • Intelligent coal mine data governance is the key bottleneck to achieving the high-level development goal of coal mine intelligent construction. It is of great significance to ensure data operation compliance, ensure data quality, prevent and control data risks, and improve data value. However, there is a lack of perfect methodology to guide the theoretical research and technical practice of intelligent coal mine data governance. In order to solve this problem, an intelligent coal mine data governance element-mechanism-hierarchy-process reference model is constructed from four dimensions of data governance elements, governance mechanism, governance hierarchy and governance process. It provides a multi-dimensional fusion methodology perspective and theoretical analysis logic to achieve an understanding of key issues. It is concluded that complex system theory, data strategic management theory, collaborative innovation theory, digital continuity theory, public governance theory, information life cycle theory, and PDCA cycle theory are the important theoretical basis of intelligent coal mine data governance. Under the guidance of the reference model of intelligent coal mine data governance, and based on the relevant theoretical basis, an intelligent coal mine data governance system framework is constructed. It includes five major components: data governance environment, driving and supporting factors, top-level design, data governance domain, and data governance process and capability. Benchmarking the framework of intelligent coal mine data governance system, it is concluded that intelligent coal mine data governance still needs to further break through the five key issues. The issues are data value movement law disclosure, metadata and data dictionary construction, data quality and data security system management rule design, complex giant system data coupling model development and digital intelligence generation law modeling.
  • [1]
    刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报,2021,46(1):1-15.

    LIU Feng,CAO Wenjun,ZHANG Jianming,et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry[J]. Journal of China Coal Society,2021,46(1):1-15.
    [2]
    王国法,杜毅博,徐亚军,等. 中国煤炭开采技术及装备50年发展与创新实践——纪念《煤炭科学技术》创刊50周年[J]. 煤炭科学技术,2023,51(1):1-18.

    WANG Guofa,DU Yibo,XU Yajun,et al. Development and innovation practice of China coal mining technology and equipment for 50 years:commemorate the 50th anniversary of the publication of Coal Science and Technology[J]. Coal Science and Technology,2023,51(1):1-18.
    [3]
    王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27.

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27.
    [4]
    谭章禄,吴琦. 基于层级链参考模型的智慧矿山建设问题分析[J]. 矿业科学学报,2022,7(2):257-266.

    TAN Zhanglu,WU Qi. Analysis of the problems of smart mine construction based on the layer-level-chain reference model[J]. Journal of Mining Science and Technology,2022,7(2):257-266.
    [5]
    谭章禄,王美君. 智慧矿山数据治理概念内涵、发展目标与关键技术[J]. 工矿自动化,2022,48(5):6-14.

    TAN Zhanglu,WANG Meijun. Research on the concept connotation,development goal and key technologies of data governance for smart mine[J]. Journal of Mine Automation,2022,48(5):6-14.
    [6]
    何敏. 智能煤矿数据治理框架与发展路径[J]. 工矿自动化,2020,46(11):23-27.

    HE Min. Framework and development path of data governance in intelligent coal mine[J]. Industry and Mine Automation,2020,46(11):23-27.
    [7]
    谭章禄,王美君. 智能化煤矿数据治理概念模型及技术架构研究[J]. 矿业科学学报,2023,8(2):242-255.

    TAN Zhanglu,WANG Meijun. Research on the conceptual model and technical architecture of data governance for intelligent coal mine[J]. Journal of Mining Science and Technology,2023,8(2):242-255.
    [8]
    谭章禄,王美君. 智能化煤矿数据归类与编码实质、目标与技术方法[J]. 工矿自动化,2023,49(1):56-62,72.

    TAN Zhanglu,WANG Meijun. The essence,goal and technical method of intelligent coal mine data classification and coding[J]. Journal of Mine Automation,2023,49(1):56-62,72.
    [9]
    贺耀宜,刘丽静,赵立厂,等. 基于工业物联网的智能矿山基础信息采集关键技术与平台[J]. 工矿自动化,2021,47(6):17-24.

    HE Yaoyi,LIU Lijing,ZHAO Lichang,et al. Key technology and platform of intelligent mine basic information acquisition based on industrial Internet of things[J]. Industry and Mine Automation,2021,47(6):17-24.
    [10]
    李国民,章鳌,贺耀宜,等. 智能矿井多元监控数据集成关键技术研究[J]. 工矿自动化,2022,48(8):127-130,146.

    LI Guomin,ZHANG Ao,HE Yaoyi,et al. Research on key technologies of multi-element monitoring data integration in intelligent mine[J]. Journal of Mine Automation,2022,48(8):127-130,146.
    [11]
    王霖,方乾,张晓霞,等. 智能化煤矿数据仓库建模方法[J]. 工矿自动化,2022,48(4):5-13.

    WANG Lin,FANG Qian,ZHANG Xiaoxia,et al. Intelligent coal mine data warehouse modeling method[J]. Journal of Mine Automation,2022,48(4):5-13.
    [12]
    刘海强,陈晓晶,张兴华,等. 面向煤矿安全监控的数据仓库关键技术[J]. 工矿自动化,2022,48(4):31-37,113.

    LIU Haiqiang,CHEN Xiaojing,ZHANG Xinghua,et al. Key technologies of data warehouse for coal mine safety monitoring[J]. Journal of Mine Automation,2022,48(4):31-37,113.
    [13]
    王国法,任怀伟,赵国瑞,等. 智能化煤矿数据模型及复杂巨系统耦合技术体系[J]. 煤炭学报,2022,47(1):61-74.

    WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Digital model and giant system coupling technology system of smart coal mine[J]. Journal of China Coal Society,2022,47(1):61-74.
    [14]
    疏礼春. 智能煤矿数据中台架构及关键技术研究[J]. 工矿自动化,2021,47(6):40-44. DOI: 10.13272/j.issn.1671-251x.2020120052

    SHU Lichun. Research on the architecture and key technologies of intelligent coal mine data middle platform[J]. Industry and Mine Automation,2021,47(6):40-44. DOI: 10.13272/j.issn.1671-251x.2020120052
    [15]
    杜毅博,赵国瑞,巩师鑫. 智能化煤矿大数据平台架构及数据处理关键技术研究[J]. 煤炭科学技术,2020,48(7):177-185.

    DU Yibo,ZHAO Guorui,GONG Shixin. Study on big data platform architecture of intelligent coal mine and key technologies of data processing[J]. Coal Science and Technology,2020,48(7):177-185.
    [16]
    姜德义,魏立科,王翀,等. 智慧矿山边缘云协同计算技术架构与基础保障关键技术探讨[J]. 煤炭学报,2020,45(1):484-492.

    JIANG Deyi,WEI Like,WANG Chong,et al. Discussion on the technology architecture and key basic support technology for intelligent mine edge-cloud collaborative computing[J]. Journal of China Coal Society,2020,45(1):484-492.
    [17]
    曹现刚,张梦园,雷卓,等. 煤矿装备维护知识图谱构建及应用[J]. 工矿自动化,2021,47(3):41-45.

    CAO Xiangang,ZHANG Mengyuan,LEI Zhuo,et al. Construction and application of knowledge graph for coal mine equipment maintenance[J]. Industry and Mine Automation,2021,47(3):41-45.
    [18]
    安小米,王丽丽. 大数据治理体系构建方法论框架研究[J]. 图书情报工作,2019,63(24):43-51.

    AN Xiaomi,WANG Lili. Research on methodology framework for big data governance system building[J]. Library and Information Service,2019,63(24):43-51.
    [19]
    GB/T 34960.5—2018 信息技术服务 治理 第5部分: 数据治理规范[S].

    GB/T 34960.5-2018 Information technology service-Governance-Part 5: specification of data governance[S].
    [20]
    安小米,许济沧,王丽丽,等. 国际标准中的数据治理:概念、视角及其标准化协同路径[J]. 中国图书馆学报,2021,47(5):59-79. DOI: 10.13530/j.cnki.jlis.2021038

    AN Xiaomi,XU Jicang,WANG Lili,et al. Data governance in international standards:concepts,perspectives and the ways to standardization collaboration[J]. Journal of Library Science in China,2021,47(5):59-79. DOI: 10.13530/j.cnki.jlis.2021038
    [21]
    王鹏,胡而已,徐金陵,等. 智能化矿山数据融合共享规范体系研究[J]. 中国煤炭,2022,48(6):19-27. DOI: 10.3969/j.issn.1006-530X.2022.06.005

    WANG Peng,HU Eryi,XU Jinling,et al. Research on data fusion and sharing standard system of intelligent mine[J]. China Coal,2022,48(6):19-27. DOI: 10.3969/j.issn.1006-530X.2022.06.005
  • Related Articles

    [1]CHEN Tengjie, LI Yong'an, ZHANG Zhihao, LIN Bin. Foreign object detection and counting method for belt conveyor based on improved YOLOv8n+DeepSORT[J]. Journal of Mine Automation, 2024, 50(8): 91-98. DOI: 10.13272/j.issn.1671-251x.2024070043
    [2]HONG Yan, WANG Lei, SU Jingming, WANG Hantao, LI Mushi. Foreign object detection of coal mine conveyor belt based on improved YOLOv8[J]. Journal of Mine Automation, 2024, 50(6): 61-69. DOI: 10.13272/j.issn.1671-251x.2024050006
    [3]SHEN Ning. Surface foreign object detection of belt conveyor used in coal preparation plant based on binocular vision[J]. Journal of Mine Automation, 2023, 49(S1): 82-85.
    [4]CAO Zhengyuan, JIANG Wei, FANG Chenghui. Intelligent detection method for coal flow foreign objects based on dual attention generative adversarial network[J]. Journal of Mine Automation, 2023, 49(12): 56-62. DOI: 10.13272/j.issn.1671-251x.18094
    [5]TANG Jun, LI Jingzhao, SHI Qing, YANG Ping, WANG Rui. Real time detection of foreign objects in belt conveyors based on Faster-YOLOv7[J]. Journal of Mine Automation, 2023, 49(11): 46-52, 66. DOI: 10.13272/j.issn.1671-251x.2023020037
    [6]MAO Qinghua, LI Shikun, HU Xin, XUE Xusheng, YAO Lijie. Foreign object recognition of belt conveyor in coal mine based on improved YOLOv7[J]. Journal of Mine Automation, 2022, 48(12): 26-32. DOI: 10.13272/j.issn.1671-251x.2022100011
    [7]SHI Lingkai, GENG Yide, WANG Hongwei, WANG Hongli. Multi-object detection of iron foreign bodies in scraper conveyor based on improved Mask R-CNN[J]. Journal of Mine Automation, 2022, 48(10): 55-61. DOI: 10.13272/j.issn.1671-251x.2022080029
    [8]DU Jingyi, CHEN Rui, HAO Le, SHI Zhimang. Coal mine belt conveyor foreign object detectio[J]. Journal of Mine Automation, 2021, 47(8): 77-83. DOI: 10.13272/j.issn.1671-251x.2021040026
    [9]HU Jinghao, GAO Yan, ZHANG Hongjuan, JIN Baoquan. Research on the identification method of non-coal foreign object ofbelt conveyor based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 57-62. DOI: 10.13272/j.issn.1671-251x.2021020041
    [10]SUN Jiping, LI Yue. Binocular vision-based perception and positioning method of mine external fire[J]. Journal of Mine Automation, 2021, 47(6): 12-16. DOI: 10.13272/j.issn.1671-251x.17766
  • Cited by

    Periodical cited type(20)

    1. 王鑫. 皮带运输机异物检测方案设计. 机械管理开发. 2025(01): 145-146+207 .
    2. 张国鸣. 煤矿带式输送机电气控制系统设计. 煤炭技术. 2024(01): 252-255 .
    3. 王枫,张胜. 基于立体视觉的高速公路收费机器人目标识别方法. 自动化与仪器仪表. 2024(04): 189-192 .
    4. 黄章瑞,程文婷. 基于机器学习的四足移动机器人视觉导航方法. 信息与电脑(理论版). 2024(05): 43-45 .
    5. 黄家林,方欢. 煤矿带式输送机数字孪生系统的HCPN性能评价方法. 电子设计工程. 2024(16): 22-26 .
    6. 徐明辉. 煤矿带式输送机综合控制技术的运用研究. 内蒙古煤炭经济. 2024(13): 130-132 .
    7. 侯晶男. 矿用带式输送机监控系统的设计及应用分析. 机械管理开发. 2024(08): 227-229 .
    8. 梅晓虎,吕小强,雷萌. 基于Stair-YOLOv7-tiny的煤矿井下输送带异物检测. 工矿自动化. 2024(08): 99-104+111 . 本站查看
    9. 窦小雨. 基于激光传感技术的电子商务配送机器人自动化控制系统设计. 自动化与仪器仪表. 2024(09): 253-257 .
    10. 黄晨烜,常健,王雷. 基于激光雷达的井下带式输送机边缘提取方法. 工矿自动化. 2024(09): 115-123 . 本站查看
    11. 唐弢,王振邦,许聪,李春宇. 基于视觉技术的物流分拣机器人自动定位系统设计. 自动化与仪器仪表. 2023(06): 188-191 .
    12. 刘卫东. 煤矿主运带式输送机自动控制系统的设计与应用. 矿业装备. 2023(06): 189-191 .
    13. 旷永龙. 煤矿带式输送机非煤异物检测系统设计与试验. 山西焦煤科技. 2023(08): 28-30+42 .
    14. 毛清华,郭文瑾,翟姣,王荣泉,尚新芒,李世坤,薛旭升. 煤矿带式输送机异常状态视频AI识别技术研究. 工矿自动化. 2023(09): 36-46 . 本站查看
    15. 沈宁. 基于双目视觉的选煤厂用胶带输送机表面异物检测. 工矿自动化. 2023(S1): 82-85 . 本站查看
    16. 李哲,伍世英,袁宝欣,许昌. 一种智能高效识别与分拣机器人方案设计思路. 科技风. 2023(30): 1-3 .
    17. 禹万林,郁杰. 基于负载预测的矿用带式输送机调速系统设计. 煤炭技术. 2023(12): 264-267 .
    18. 耿延兵,王章国. 基于图像灰度识别的煤泥水絮凝沉降速率快速检测方法. 工矿自动化. 2023(12): 87-93 . 本站查看
    19. 曹正远,蒋伟,方成辉. 基于双注意力生成对抗网络的煤流异物智能检测方法. 工矿自动化. 2023(12): 56-62 . 本站查看
    20. 李江涛,张康辉,沙特. 煤中异物识别的深度学习模型轻量化策略. 煤炭工程. 2023(S1): 220-224 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (1185) PDF downloads (112) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return