WANG Yong, CHENG Can, DAI Ming-jun, SUN Yong. An Optimized Method for Semi-supervised Support Vector Machines[J]. Journal of Mine Automation, 2010, 36(12): 47-50.
Citation: WANG Yong, CHENG Can, DAI Ming-jun, SUN Yong. An Optimized Method for Semi-supervised Support Vector Machines[J]. Journal of Mine Automation, 2010, 36(12): 47-50.

An Optimized Method for Semi-supervised Support Vector Machines

More Information
  • In view of problem of non-convex optimization problem that semi-supervised support vector machines use margin maximization principle to classify labeled and unlabeled samples, a method EDA_S3VM was proposed which using estimation of distribution algorithm to optimize semi-supervised support vector machines. Labels of unlabeled samples are taken as optimized parameters to obtain a combinatorial optimization problem on standard support vector machines, which can be solved by estimation of distribution algorithm through learning and sampling of probability model. The experiment results of artificial and UCI datasets showed that EDA_S3VM has better classification accuracy than other methods of semi-supervised support vector machines.
  • Related Articles

    [1]YAN Li, WEN Hu, WANG Zhenping, JIN Yongfei. Evaluation method for gas pre-extraction status in coal seam boreholes based on semi-supervised learning[J]. Journal of Mine Automation, 2025, 51(3): 113-121. DOI: 10.13272/j.issn.1671-251x.2025020046
    [2]LI Tieniu, HU Binxin, LI Huakun, GENG Wencheng, HAO Pengcheng, JI Xubo, SUN Zengrong, ZHU Feng, ZHANG Hua, YANG Chengquan. Automatic picking method of microseismic first arrival time based on improved support vector machine[J]. Journal of Mine Automation, 2023, 49(3): 63-69. DOI: 10.13272/j.issn.1671-251x.2022050081
    [3]WU Yaqin, LI Huijun, XU Danni. Prediction algorithm of coal and gas outburst based on IPSO-Powell optimized SVM[J]. Journal of Mine Automation, 2020, 46(4): 46-53. DOI: 10.13272/j.issn.1671-251x.2019110018
    [4]MA Xianmin, ZHANG Xing, ZHANG Yongqiang. Fault diagnosis of explosion proof motor based on SVM and RS[J]. Journal of Mine Automation, 2017, 43(2): 35-40. DOI: 10.13272/j.issn.1671-251x.2017.02.008
    [5]ZHAO Bilong, QIAO Tiezhu. Detection method of belt longitudinal tear based on support vector machine and infrared image segmentation[J]. Journal of Mine Automation, 2014, 40(5): 30-33. DOI: 10.13272/j.issn.1671-251x.2014.05.008
    [6]SUN Yun-xiao, FANG Jian, MA Xiao-ping. Research of Prediction of Coal and Gas Outburst Based on Semi-supervised Learning and Support Vector Machine[J]. Journal of Mine Automation, 2012, 38(11): 40-42.
    [7]ZHANG Qian, LI Ming, WANG Xue-song. Research of Semi-supervised Regression Algorithm Based on Density Distributio[J]. Journal of Mine Automation, 2012, 38(3): 29-30.
    [8]JIA Yan-feng, WANG Chun-lei, XIE Hai-dong, WANG Zhi-dong. Application Research of SVM in Risk Assessment of Coal Marketing[J]. Journal of Mine Automation, 2011, 37(7): 68-71.
    [9]SU Po, CHEN Qing, . Analysis of Mine Low-voltage Leakage Protection in Situation of Great Disparity between Long and Short Lines and Big Unbalanced Current[J]. Journal of Mine Automation, 2010, 36(10): 32-35.
    [10]JIANG Xiao-yan, LI Shi-yin, ZHANG Ming-sheng, YANG Lei, QIN Li-bo. Analysis of Several Bandwidth Estimate Algorithms of TCP and Its Compariso[J]. Journal of Mine Automation, 2009, 35(4): 35-38.

Catalog

    Article Metrics

    Article views (64) PDF downloads (8) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return