ZHAI Xiaowei, LUO Jinlei, ZHANG Yuchen, et al. Prediction model of coal spontaneous combustion temperature based on data filling[J]. Journal of Mine Automation,2023,49(1):28-35, 98. DOI: 10.13272/j.issn.1671-251x.2022090032
Citation: ZHAI Xiaowei, LUO Jinlei, ZHANG Yuchen, et al. Prediction model of coal spontaneous combustion temperature based on data filling[J]. Journal of Mine Automation,2023,49(1):28-35, 98. DOI: 10.13272/j.issn.1671-251x.2022090032

Prediction model of coal spontaneous combustion temperature based on data filling

More Information
  • Received Date: September 08, 2022
  • Revised Date: January 04, 2023
  • Available Online: December 08, 2022
  • Most of the existing coal spontaneous combustion temperature prediction models are based on relatively complete index gas sample data. However, the index gas data are affected by instruments or human factors. There are often data missing phenomena, resulting in low accuracy and over-fitting of coal spontaneous combustion temperature prediction. In order to solve the above problems, the paper proposes to apply filling algorithms such as K-nearest neighbor algorithm (KNN), random forest algorithm (RF), decision tree algorithm (DT) and support vector regression algorithm based on particle swarm optimization (PSO-SVR) to fill in the missing values. The missing data and the filled data are trained by RF, SVR and extreme gradient boosting (XGBoost) algorithm respectively. The parameters are optimized by the PSO algorithm. The RF, XGBoost and SVR coal spontaneous combustion temperature prediction models based on data filling are constructed. CO, CO2, CH4, C2H6 and O2 are selected as index gas in coal spontaneous combustion experiment, and six kinds of random data missing are designed. The overall missing rates are designed as 10%, 20% and 30%. The missing rates of CO and CO2 are designed as 40%, 50% and 60%. The average absolute error percentage (MAPE) is used as the filling effect evaluation index. The MAPE, the judgment coefficient R2 and the root mean square error (RMSE) are used as the model performance evaluation index. Four filling algorithms and three prediction models are compared. The results of the comparative analysis show the following points. The DT filling algorithm has better filling effect than the other three algorithms in six kinds of missing data cases. When there are more missing values of CO and CO2, the MAPE between the filling value and the actual values of the RF algorithm is large. The XGBoost model works extremely well in the training set without adjusting the parameters, but it is very prone to overfitting. The prediction effect of SVR model is very poor and the model cannot meet the prediction requirements. In the case of six kinds of data missing, the MAPE of PSO-SVR, RF and PSO-RF coal spontaneous combustion temperature prediction models based on the DT filling algorithm are about 4%. The RF model based on the DT filling algorithm can predict the coal spontaneous combustion temperature without optimization and has good stability.
  • [1]
    邓军,白祖锦,肖旸,等. 煤自燃灾害防治技术现状与挑战[J]. 煤矿安全,2020,51(10):118-125. DOI: 10.13347/j.cnki.mkaq.2020.10.018

    DENG Jun,BAI Zujin,XIAO Yang,et al. Present situation and challenge of coal spontaneous combustion disasters prevention and control technology[J]. Safety in Coal Mines,2020,51(10):118-125. DOI: 10.13347/j.cnki.mkaq.2020.10.018
    [2]
    王德明,邵振鲁,朱云飞. 煤矿热动力重大灾害中的几个科学问题[J]. 煤炭学报,2021,46(1):57-64. DOI: 10.13225/j.cnki.jccs.YG20.1798

    WANG Deming,SHAO Zhenlu,ZHU Yunfei. Several scientific issues on major thermodynamic disasters in coal mines[J]. Journal of China Coal Society,2021,46(1):57-64. DOI: 10.13225/j.cnki.jccs.YG20.1798
    [3]
    王德明. 煤矿热动力灾害及特性[J]. 煤炭学报,2018,43(1):137-142. DOI: 10.13225/j.cnki.jccs.2017.4300

    WANG Deming. Thermodynamic disaster in coal mine and its characteristics[J]. Journal of China Coal Society,2018,43(1):137-142. DOI: 10.13225/j.cnki.jccs.2017.4300
    [4]
    郭庆. 采空区煤自燃预警技术及应用研究[D]. 徐州: 中国矿业大学, 2021.

    GUO Qing. Research on early warning technology and application of coal spontaneous combustion in goaf[D]. Xuzhou: China University of Mining and Technology, 2021.
    [5]
    ONIFADE M,GENC B,BADA S. Spontaneous combustion liability between coal seams:a thermogravimetric study[J]. International Journal of Mining Science and Technology,2020,30(5):691-698. DOI: 10.1016/j.ijmst.2020.03.006
    [6]
    邓军,雷昌奎,曹凯,等. 采空区煤自燃预测的随机森林方法[J]. 煤炭学报,2018,43(10):2800-2808. DOI: 10.13225/j.cnki.jccs.2018.0710

    DENG Jun,LEI Changkui,CAO Kai,et al. Random forest method for predicting coal spontaneous combustion in gob[J]. Journal of China Coal Society,2018,43(10):2800-2808. DOI: 10.13225/j.cnki.jccs.2018.0710
    [7]
    DENG Jun,CHEN Weile,WANG Caiping,et al. Prediction model for coal spontaneous combustion based on SA-SVM.[J]. ACS Omega,2021,6(17):11307-11318. DOI: 10.1021/acsomega.1c00169
    [8]
    周旭,朱毅,张九零,等. 基于PSO−XGBoost的煤自燃程度预测研究[J]. 矿业安全与环保,2022,49(6):79-84.

    ZHOU Xu,ZHU Yi,ZHANG Jiuling,et al. Study on prediction model of coal spontaneous combustion based on PSO-XGBoost[J]. Mining Safety & Environmental Protection,2022,49(6):79-84.
    [9]
    彭志江. 面向小样本数据的特征分析技术研究[D]. 成都: 电子科技大学, 2021.

    PENG Zhijiang. Feature analysis technology for small sample data[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
    [10]
    郑晓亮. 基于瓦斯含量法的煤与瓦斯突出预测关键技术研究[D]. 淮南: 安徽理工大学, 2018.

    ZHENG Xiaoliang. Research on key technology of coal and gas outburst prediction based on gas content method[D]. Huainan: Anhui University of Science and Technology, 2018.
    [11]
    陈娟,王献雨,罗玲玲,等. 缺失值填补效果:机器学习与统计学习的比较[J]. 统计与决策,2020,36(17):28-32. DOI: 10.13546/j.cnki.tjyjc.2020.17.006

    CHENG Juan,WANG Xianyu,LUO Lingling,et al. Comparison of machine learning and statistical learning in the imputation of missing values[J]. Statistics & Decision,2020,36(17):28-32. DOI: 10.13546/j.cnki.tjyjc.2020.17.006
    [12]
    陈利成,陈建宏. 基于数据填补−机器学习的煤与瓦斯突出预测效果研究[J]. 中国安全生产科学技术,2022,18(9):69-74.

    CHEN Licheng,CHEN Jianhong. Study on prediction effect of coal and gas outburst based on data imputation and machine learning[J]. Journal of Safety Science and Technology,2022,18(9):69-74.
    [13]
    郑晓亮,来文豪,薛生. MI和SVM算法在煤与瓦斯突出预测中的应用[J]. 中国安全科学学报,2021,31(1):75-80. DOI: 10.16265/j.cnki.issn1003-3033.2021.01.011

    ZHENG Xiaoliang,LAI Wenhao,XUE Sheng. Application of MI and SVM in coal and gas outburst prediction[J]. China Safety Science Journal,2021,31(1):75-80. DOI: 10.16265/j.cnki.issn1003-3033.2021.01.011
    [14]
    LI Zhuoxuan,SHI Xinli,CAO Jinde,et al. CPSO-XGBoost segmented regression model for asphalt pavement deflection basin area prediction[J]. Science China (Technological Sciences),2022,65(7):1470-1481. DOI: 10.1007/s11431-021-1972-7
    [15]
    任万兴,郭庆,石晶泰,等. 基于标志气体统计学特征的煤自燃预警指标构建[J]. 煤炭学报,2021,46(6):1747-1758. DOI: 10.13225/j.cnki.jccs.HZ21.0006

    REN Wanxing,GUO Qing,SHI Jingtai,et al. Construction of early warning indicators for coal spontaneous combustion based on statistical characteristics of index gases[J]. Journal of China Coal Society,2021,46(6):1747-1758. DOI: 10.13225/j.cnki.jccs.HZ21.0006
  • Related Articles

    [1]ZHANG Zenghui, MA Wenwei. Prediction of gas emission in mining face based on random forest regression algorithm[J]. Journal of Mine Automation, 2023, 49(12): 33-39. DOI: 10.13272/j.issn.1671-251x.2023020006
    [2]WEI Feng, MA Long. Locality-sensitive hashing K-means algorithm for large-scale datasets[J]. Journal of Mine Automation, 2023, 49(3): 53-62. DOI: 10.13272/j.issn.1671-251x.2022080018
    [3]ZHENG Xuezhao, LI Menghan, ZHANG Yanni, JIANG Peng, WANG Baoyuan. Research on the prediction model of coal spontaneous combustion temperature based on random forest algorithm[J]. Journal of Mine Automation, 2021, 47(5): 58-64. DOI: 10.13272/j.issn.1671-251x.17700
    [4]WU Yaqin, LI Huijun, XU Danni. Prediction algorithm of coal and gas outburst based on IPSO-Powell optimized SVM[J]. Journal of Mine Automation, 2020, 46(4): 46-53. DOI: 10.13272/j.issn.1671-251x.2019110018
    [5]FENG Shuo, XIE Tingchuan, KANG Jing, LI Jianliang. Path planning of mine search and rescue robot based on two-particle swarm optimization algorithm[J]. Journal of Mine Automation, 2020, 46(1): 65-71. DOI: 10.13272/j.issn.1671-251x.2019050092
    [6]MO Shupei, TANG Jin, WANG Yu, LAI Pujian, JIN Limo. Underground personnel positioning algorithm based on clustering and K-nearest neighbor algorithm[J]. Journal of Mine Automation, 2019, 45(4): 43-48. DOI: 10.13272/j.issn.1671-251x.2018110072
    [7]YE Manyuan, HUANG Kaifeng. Power balance control strategy for staircase modulation based on improved particle swarm optimization algorithm[J]. Journal of Mine Automation, 2015, 41(9): 57-62. DOI: 10.13272/j.issn.1671-251x.2015.09.015
    [8]CHI Jing, YANG Zhen-yu, ZHANG Ting. Intrusion detection method based on Bayesian and decision tree[J]. Journal of Mine Automation, 2013, 39(2): 62-65.
    [9]WANG Jian-jun, WANG Shi-ying, LEI Meng. Application of Particle Swarm Optimization Algorithm in Prediction of Coal Calorific Value[J]. Journal of Mine Automation, 2012, 38(5): 50-53.
    [10]AN Feng-shua, . Optimization of PID Controller Parameters Based on Modified Particle Swarm Optimization Algorithm[J]. Journal of Mine Automation, 2010, 36(5): 54-57.
  • Cited by

    Periodical cited type(7)

    1. 孙吉平. 基于SF_6质量浓度变化特征的煤矿火灾状态识别分析. 山西煤炭. 2025(01): 42-49 .
    2. 邓军,李鑫,王凯,王伟峰,闫军,汤宗情,康付如,任帅京. 矿井火灾智能监测预警技术近20年研究进展及展望. 煤炭科学技术. 2024(01): 154-177 .
    3. 王刚,杨宝东,徐浩,孙路路,黄启铭. 煤自燃程序升温实验及其在实验教学中的应用. 实验技术与管理. 2024(03): 225-231 .
    4. 曹富荣,吴学松,李军,付天予,刘佳伟,李志辉,杨小彬. 基于机器学习的多气体指标煤自燃温度预测. 煤矿安全. 2024(04): 106-113 .
    5. 杨英兵,邢真强,张运增,郭佳策,李龙,鹿文勇,陈明浩. 煤自燃全阶段防控研究进展及趋势分析. 煤矿安全. 2024(07): 85-101 .
    6. 王玉怀,胡硕鹏,朱永兴,窦静文,张烜乐,张思佳. 机器学习在煤自燃预测预报中的应用现状及展望. 中国煤炭. 2024(10): 98-103 .
    7. 童保国,姜福领,毕寸光,王亮,田坤云. 基于LSTM改进Transformer的煤自燃温度预测模型. 金属矿山. 2024(12): 275-280 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (248) PDF downloads (41) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return