JI Liang. Coal mine image instance segmentation method based on improved SOLOv2[J]. Journal of Mine Automation,2023,49(11):115-120. DOI: 10.13272/j.issn.1671-251x.2023030017
Citation: JI Liang. Coal mine image instance segmentation method based on improved SOLOv2[J]. Journal of Mine Automation,2023,49(11):115-120. DOI: 10.13272/j.issn.1671-251x.2023030017

Coal mine image instance segmentation method based on improved SOLOv2

More Information
  • Received Date: March 05, 2023
  • Revised Date: November 02, 2023
  • Available Online: November 26, 2023
  • The existing image segmentation methods have good results when used for coal mine underground images with good clarity. But when the methods are applied to coal mine underground images with complex environments, the obtained images are mostly blurry and the contour of the target object is not clear. The result affects the segmentation precision of the target object. In order to solve the above problems, a coal mine image instance segmentation method based on improved SOLOv2 is proposed. The method replaces the ResNet-50 network of the SOLOv2 model with the ResNeXt-18 network to simplify the network layers and improve the inference speed of the model. The method introduces the coordinate attention (CA) module to enhance the model's feature extraction capability, retain precise positional information, and improve the model's image segmentation precision. The method replaces the ReLU activation function with the ACON-C activation function. The features between neurons can be fully combined, enhancing the model's feature expression capability, and further improving the image segmentation precision of the model. The improved SOLOv2 model is deployed on an embedded platform for coal mine image segmentation experiments. Compared to the SOLOv2 model, the Mask AP (mask average precision) of the improved SOLOv2 model increases by 1.1%, the weight file of the model decreases by 83.2 MiB. The inference speed increases by 5.30 frames/s, reaching 26.10 frames/s. Both the precision and inference speed of coal mine image segmentation are improved to a certain extent.
  • [1]
    LIN Kunqi,HUANG Wenhui,FINKELMAN R B,et al. Distribution,modes of occurrence,and main factors influencing lead enrichment in Chinese coals[J]. International Journal of Coal Science & Technology,2020,7(1):1-18.
    [2]
    JU Yang,ZHU Yan,XIE Heping,et al. Fluidized mining and insitu transformation of deep underground coal resources:a novel approach to ensuring safe,environmentally friendly,low-carbon,and clean utilisation[J]. International Journal of Coal Science & Technology,2019,6(2):184-196.
    [3]
    LONG J,SHELHAMER E,DARRELL T. Fully convolutional networks for semantic segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition,Boston,2015:3431-3440.
    [4]
    REN Shaoqing,HE Kaiming,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
    [5]
    LIU Shu,QI Lu,QIN Haifang,et al. Path aggregation network for instance segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:8759-8768.
    [6]
    HE Kaiming,GKIOXARI G,DOLLAR P,et al. Mask R-CNN[C]. IEEE International Conference on Computer Vision,Venice,2017:2980-2988.
    [7]
    BOLYA D,ZHOU Chong,XIAO Fanyi,et al. YOLACT:real-time instance segmentation[C]. IEEE/CVF International Conference on Computer Vision,Seoul,2019:9156-9165.
    [8]
    BAI Min,URTASUN R. Deep watershed transform for instance segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:2858-2866.
    [9]
    DAI Jifeng,HE Kaiming,LI Yi,et al. Instance-sensitive fully convolutional networks[C]. European Conference on Computer Vision,Amsterdam,2016:534-549.
    [10]
    CHEN Xinlei,GIRSHICK R,HE Kaiming,et al. TensorMask:a foundation for dense object segmentation[C]. IEEE/CVF International Conference on Computer Vision,Seoul,2019:2061-2069.
    [11]
    XIE Enze,SUN Peize,SONG Xiaoge,et al. PolarMask:single shot instance segmentation with polar representation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:12190-12199.
    [12]
    WANG Xinlong,KONG Tao,SHEN Chunhua,et al. SOLO:segmenting objects by locations[C]. European Conference on Computer Vision,Glasgow,2020:649-665.
    [13]
    李明,鹿朋,朱美强,等. 基于改进YOLO−tiny的闸板阀开度检测[J]. 煤炭学报,2021,46(增刊2):1180-1190. DOI: 10.13225/j.cnki.jccs.2021.0200

    LI Ming,LU Peng,ZHU Meiqiang,et al. Opening degree detection of gate valve based on improved YOLO-tiny[J]. Journal of China Coal Society,2021,46(S2):1180-1190. DOI: 10.13225/j.cnki.jccs.2021.0200
    [14]
    赵小虎,车亭雨,叶圣,等. 煤体红外热像异常区域分割方法[J]. 工矿自动化,2022,48(9):92-99.

    ZHAO Xiaohu,CHE Tingyu,YE Sheng,et al. Segmentation method of the abnormal area of coal infrared thermal image[J]. Journal of Mine Automation,2022,48(9):92-99.
    [15]
    冯文彬,厉舒南,田昊,等. 基于融合边缘优化的煤矿图像语义分割方法[J]. 煤矿安全,2022,53(2):136-141. DOI: 10.13347/j.cnki.mkaq.2022.02.022

    FENG Wenbin,LI Shunan,TIAN Hao,et al. Images semantic segmentation method based on fusion edge optimization[J]. Safety in Coal Mines,2022,53(2):136-141. DOI: 10.13347/j.cnki.mkaq.2022.02.022
    [16]
    杨潇,陈伟,任鹏,等. 基于域适应的煤矿环境监控图像语义分割[J]. 煤炭学报,2021,46(10):3386-3396. DOI: 10.13225/j.cnki.jccs.2020.1771

    YANG Xiao,CHEN Wei,REN Peng,et al. Coal mine monitoring image semantic segmentation based on domain adaptation[J]. Journal of China Coal Society,2021,46(10):3386-3396. DOI: 10.13225/j.cnki.jccs.2020.1771
    [17]
    左纯子,王征,张科,等. 基于改进DeepLabV3+的煤尘图像分割方法[J]. 工矿自动化,2022,48(5):52-57,64.

    ZUO Chunzi,WANG Zheng,ZHANG Ke,et al. Coal dust image segmentation method based on improved DeepLabV3+[J]. Journal of Mine Automation,2022,48(5):52-57,64.
    [18]
    司垒,王忠宾,熊祥祥,等. 基于改进U−net网络模型的综采工作面煤岩识别方法[J]. 煤炭学报,2021,46(增刊1):578-589. DOI: 10.13225/j.cnki.jccs.2020.1011

    SI Lei,WANG Zhongbin,XIONG Xiangxiang,et al. Coal-rock recognition method of fully-mechanized coal mining face based on improved U-net network model[J]. Journal of China Coal Society,2021,46(S1):578-589. DOI: 10.13225/j.cnki.jccs.2020.1011
    [19]
    WANG Xinlong,ZHANG Rufeng,KONG Tao,et al. SOLOv2:dynamic and fast instance segmentation[EB/OL]. [2023-02-20]. https://arxiv.org/abs/2003.10152.
    [20]
    HOU Qibin,ZHOU Daquan,FENG Jiashi. Coordinate attention for efficient mobile network design[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville,2021:13708-13717.
    [21]
    MA Ningning,ZHANG Xiangyu,LIU Ming,et al. Activate or not:learning customized activation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:8028-8038.
  • Related Articles

    [1]TAN Donggui, YUAN Yiping, FAN Panpan. Health status evaluation of CNN-GRU mine motor based on adaptive multi-scale attention mechanism[J]. Journal of Mine Automation, 2024, 50(2): 138-146. DOI: 10.13272/j.issn.1671-251x.2023110024
    [2]HE Kai, CHENG Gang, WANG Xi, GE Qingnan, ZHANG Hui, ZHAO Dongyang. Research on coal gangue recognition method based on CED-YOLOv5s model[J]. Journal of Mine Automation, 2024, 50(2): 49-56, 82. DOI: 10.13272/j.issn.1671-251x.2023090065
    [3]CHENG Deqiang, ZHENG Lijuan, LIU Jingjing, KOU Qiqi, JIANG He. Quantitative analysis of coal particle size based on bi-level routing attention mechanism[J]. Journal of Mine Automation, 2024, 50(2): 9-17. DOI: 10.13272/j.issn.1671-251x.2023100002
    [4]CAO Xiangang, LI Hu, WANG Peng, WU Xudong, XIANG Jingfang, DING Wentao. A coal foreign object detection method based on cross modal attention fusion[J]. Journal of Mine Automation, 2024, 50(1): 57-65. DOI: 10.13272/j.issn.1671-251x.2023110035
    [5]CAO Zhengyuan, JIANG Wei, FANG Chenghui. Intelligent detection method for coal flow foreign objects based on dual attention generative adversarial network[J]. Journal of Mine Automation, 2023, 49(12): 56-62. DOI: 10.13272/j.issn.1671-251x.18094
    [6]LI Zhongfei, FENG Shiyong, GUO Jun, ZHANG Yunhe, XU Feixiang. Lightweight safety helmet wearing detection fusing coordinate attention and multiscale feature[J]. Journal of Mine Automation, 2023, 49(11): 151-159. DOI: 10.13272/j.issn.1671-251x.2023080123
    [7]ZHU Fuwen, HOU Zhihui, LI Mingzhen. Lightweight multi-scale cross channel attention coal flow detection network[J]. Journal of Mine Automation, 2023, 49(8): 100-105. DOI: 10.13272/j.issn.1671-251x.2023030045
    [8]RAO Tianrong, PAN Tao, XU Huijun. Unsafe action recognition in underground coal mine based on cross-attention mechanism[J]. Journal of Mine Automation, 2022, 48(10): 48-54. DOI: 10.13272/j.issn.1671-251x.17949
    [9]YE Ou, DOU Xiaoyi, FU Yan, DENG Jun. Coal block detection method integrating lightweight network and dual attention mechanism[J]. Journal of Mine Automation, 2021, 47(12): 75-80. DOI: 10.13272/j.issn.1671-251x.2021030075
    [10]ZHOU Liangping, WANG Wenhua, XU Lenian. Design of 3D vertical plumb line coordinator based on CCD[J]. Journal of Mine Automation, 2014, 40(1): 97-100. DOI: 10.13272/j.issn.1671-251x.2014.01.026
  • Cited by

    Periodical cited type(8)

    1. 雍明超,王磊,祁招,庞杰锋,姜睿智,孟乐,王胜辉,邵向阳. 干式变压器智能系统构建策略及关键技术研究. 电气应用. 2022(11): 6-15 .
    2. 石宜金,谭贵生,赵波,张桂莲. 基于模糊综合评估模型与信息融合的电力变压器状态评估方法. 电力系统保护与控制. 2022(21): 167-176 .
    3. 谭贵生,曹生现,赵波,魏宏建,刘丹丹. 基于关联规则与变权重系数的变压器状态综合评估方法. 电力系统保护与控制. 2020(01): 88-95 .
    4. 顾思宇,施伟锋,兰莹,卓金宝,张文保. 基于灰云证据推理规则的电力推进船舶电能质量在线评估. 电力系统保护与控制. 2020(08): 17-24 .
    5. 戴迎宏,陈威,闫培渊,周际,汤国龙. 基于信息融合的车载式变压器运行信息特征提取系统设计. 环境技术. 2020(03): 126-131 .
    6. 张继荣. 多维异构瓦斯浓度数据的融合实现. 陕西煤炭. 2019(05): 52-56 .
    7. 陈程,聂德鑫,冯振新,张学龙,赵坤,石悠旖. 基于概率输出支持向量机和证据理论的变压器故障诊断技术. 变压器. 2018(07): 58-61 .
    8. 董方旭,咸日常,咸日明,李文强,马雪锋. 基于细菌觅食算法优化的电力变压器故障诊断技术. 电测与仪表. 2018(19): 34-40 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (275) PDF downloads (35) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return