HE Kai, CHENG Gang, WANG Xi, et al. Research on coal gangue recognition method based on CED-YOLOv5s model[J]. Journal of Mine Automation,2024,50(2):49-56, 82. DOI: 10.13272/j.issn.1671-251x.2023090065
Citation: HE Kai, CHENG Gang, WANG Xi, et al. Research on coal gangue recognition method based on CED-YOLOv5s model[J]. Journal of Mine Automation,2024,50(2):49-56, 82. DOI: 10.13272/j.issn.1671-251x.2023090065

Research on coal gangue recognition method based on CED-YOLOv5s model

More Information
  • Received Date: September 19, 2023
  • Revised Date: February 21, 2024
  • Available Online: March 03, 2024
  • Due to the complex working conditions of high noise, low illumination, and blurred movement in coal mines underground, as well as the phenomenon of coal gangue easily gathering, it is difficult to extract features from coal gangue object detection models. The classification and positioning of coal gangue are inaccurate. In order to solve the above problems, a coal gangue recognition method based on the CED-YOLOv5s model is proposed. Firstly, the coordinate attention (CA) mechanism is introduced into the YOLOv5s backbone network, which encodes feature maps by embedding coordinate information into channel relationships and long-range dependencies. The method fully utilizes channel attention information and spatial attention information to make the model focus more on important features and suppress irrelevant information. Secondly, the EIoU regression loss function is introduced in the detection head of YOLOv5s to minimize the width and height difference between the object box and anchor box. It enhances the position and boundary information of the object, improves the positioning precision and convergence speed of the model in dense objects. Finally, a lightweight decoupling head is introduced in the detection head of YOLOv5s, decoupling separate feature channels for classification and regression tasks. It solves the interference problem between the coupling head part of the class task and the regression task in the original model, further improving the parallel operation efficiency and detection precision of the model. The experimental results show that the CED-YOLOv5s model has the best overall performance compared to other YOLO series object detection models. It has an average detection precision of 94.8%, an improvement of 3.1% compared to the YOLOv5s model, and a detection speed of 84.8 frames/s. The results can fully meet the real-time detection requirements of coal gangue in coal mines.
  • [1]
    谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197-2211.

    XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197-2211.
    [2]
    王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1-36.

    WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction(primary stage)[J]. Coal Science and Technology,2019,47(8):1-36.
    [3]
    王国法,刘峰,庞义辉,等. 煤矿智能化——煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349-357.

    WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349-357.
    [4]
    刘峰,曹文君,张建明. 持续推进煤矿智能化 促进我国煤炭工业高质量发展[J]. 中国煤炭,2019,45(12):32-36. DOI: 10.3969/j.issn.1006-530X.2019.12.006

    LIU Feng,CAO Wenjun,ZHANG Jianming. Continuously promoting the coal mine intellectualization and the high-quality development of China's coal industry[J]. China Coal,2019,45(12):32-36. DOI: 10.3969/j.issn.1006-530X.2019.12.006
    [5]
    王国法,任世华,庞义辉,等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术,2021,49(9):1-8.

    WANG Guofa,REN Shihua,PANG Yihui,et al. Development achievements of China's coal industry during the 13th Five-Year Plan period and future prospects[J]. Coal Science and Technology,2021,49(9):1-8.
    [6]
    刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报,2021,46(1):1-15.

    LIU Feng,CAO Wenjun,ZHANG Jianming,et al. Current technological innovation and development direction of the 14(th) Five-Year Plan period in China coal industry[J]. Journal of China Coal Society,2021,46(1):1-15.
    [7]
    PU Yuanyuan,APEL D B,SZMIGIEL A,et al. Image recognition of coal and coal gangue using a convolutional neural network and transfer learning[J]. Energies,2019,12(9). DOI: 10.3390/en12091735.
    [8]
    雷世威,肖兴美,张明. 基于改进YOLOv3的煤矸识别方法研究[J]. 矿业安全与环保,2021,48(3):50-55.

    LEI Shiwei,XIAO Xingmei,ZHANG Ming. Research on coal and gangue identification method based on improved YOLOv3[J]. Mining Safety & Environmental Protection,2021,48(3):50-55.
    [9]
    徐志强,吕子奇,王卫东,等. 煤矸智能分选的机器视觉识别方法与优化[J]. 煤炭学报,2020,45(6):2207-2216.

    XU Zhiqiang,LYU Ziqi,WANG Weidong,et al. Machine vision recognition method and optimization for intelligent separation of coal and gangue[J]. Journal of China Coal Society,2020,45(6):2207-2216.
    [10]
    郭永存,王希,何磊,等. 基于TW−RN优化CNN的煤矸识别方法研究[J]. 煤炭科学技术,2022,50(1):228-236. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201023

    GUO Yongcun,WANG Xi,HE Lei,et al. Research on coal and gangue recognition method based on TW-RN optimized CNN[J]. Coal Science and Technology,2022,50(1):228-236. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201023
    [11]
    李博,王学文,庞尚钟,等. 煤与矸石图像特征分析及试验研究[J]. 煤炭科学技术,2022,50(8):236-246.

    LI Bo,WANG Xuewen,PANG Shangzhong,et al. Image characteristics analysis and experimental study of coal and gangue[J]. Coal Science and Technology,2022,50(8):236-246.
    [12]
    赵明辉. 一种煤矸石优化识别方法[J]. 工矿自动化,2020,46(7):113-116.

    ZHAO Minghui. A coal-gangue optimization identification method[J]. Industry and Mine Automation,2020,46(7):113-116.
    [13]
    沈科,季亮,张袁浩,等. 基于改进YOLOv5s模型的煤矸目标检测[J]. 工矿自动化,2021,47(11):107-111,118.

    SHEN Ke,JI Liang,ZHANG Yuanhao,et al. Research on coal and gangue detection algorithm based on improved YOLOv5s model[J]. Industry and Mine Automation,2021,47(11):107-111,118.
    [14]
    张磊,王浩盛,雷伟强,等. 基于YOLOv5s−SDE的带式输送机煤矸目标检测[J]. 工矿自动化,2023,49(4):106-112.

    ZHANG Lei,WANG Haosheng,LEI Weiqiang,et al. Coal gangue target detection of belt conveyor based on YOLOv5s-SDE[J]. Journal of Mine Automation,2023,49(4):106-112.
    [15]
    LIN T-Y,DOLLAR P,GIRSHICK R B,et al. Feature pyramid networks for object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:936-944.
    [16]
    LIU Shu,QI Lu,QIN Haifang,et al. Path aggregation network for instance segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:8759-8768.
    [17]
    HOU Qibin,ZHOU Daquan,FENG Jiashi. Coordinate attention for efficient mobile network design[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville,2021:13708-13717.
    [18]
    ZHENG Zhaohui,WANG Ping,LIU Wei,et al. Distance-IoU loss:faster and better learning for bounding box regression[EB/OL]. [2023-08-12]. https://arxiv.org/abs/1911.08287v1.
    [19]
    ZHANG Yifan,REN Weiqiang,ZHANG Zhang,et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing,2022,506:146-157. DOI: 10.1016/j.neucom.2022.07.042
    [20]
    SONG Guanglu,LIU Yu,WANG Xiaogang. Revisiting the sibling head in object detector[EB/OL]. [2023-08-12]. https://arxiv.org/abs/2003.07540.
    [21]
    WU Yue,CHEN Yinpeng,YUAN Lu,et al. Rethinking classification and localization for object detection[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:10183-10192.
    [22]
    GE Zheng,LIU Songtao,WANG Feng,et al. YOLOX:exceeding YOLO series in 2021[EB/OL]. [2023-08-12]. https://arxiv.org/abs/2107.08430.
  • Related Articles

    [1]ZHAO Wei, WANG Shuang, ZHAO Dongyang. Multi object detection of underground unmanned electric locomotives in coal mines based on SD-YOLOv5s-4L[J]. Journal of Mine Automation, 2023, 49(11): 121-128. DOI: 10.13272/j.issn.1671-251x.2023070100
    [2]ZHANG Hui, SU Guoyong, ZHAO Dongyang. Research on multi object detection in mining face based on FBEC-YOLOv5s[J]. Journal of Mine Automation, 2023, 49(11): 39-45. DOI: 10.13272/j.issn.1671-251x.2023060063
    [3]ZHANG Lei, WANG Haosheng, LEI Weiqiang, WANG Bin, LIN Jiangong. Coal gangue target detection of belt conveyor based on YOLOv5s-SDE[J]. Journal of Mine Automation, 2023, 49(4): 106-112. DOI: 10.13272/j.issn.1671-251x.2022080043
    [4]ZHANG Mingzhen. Underground pedestrian detection model based on Dense-YOLO network[J]. Journal of Mine Automation, 2022, 48(3): 86-90. DOI: 10.13272/j.issn.1671-251x.17861
    [5]SONG Yunzhong, WANG Renhui. Underground target positioning based on differential error suppression optimization method[J]. Journal of Mine Automation, 2020, 46(9): 64-68. DOI: 10.13272/j.issn.1671-251x.2019050056
    [6]TENG Yue, SUN Yanjing, DING Enjie, HUO Yu, YANG Yue, ZHANG Xiaoguang. Mine tagless target location method based on combined space and frequency diversity[J]. Journal of Mine Automation, 2020, 46(7): 82-88. DOI: 10.13272/j.issn.1671-251x.17551
    [7]HU Qingsong, ZHANG Henan, WANG Peng, YANG Wei, LI Shiyin. Non-line-of-sight propagation in object localization: a survey[J]. Journal of Mine Automation, 2020, 46(7): 16-27. DOI: 10.13272/j.issn.1671-251x.17571
    [8]XU Zhiming, TIAN Zijian, WANG Wenqing, LIU Zhenzhen, LIU Ting, HUANG Lei. Region discretization mine target positioning method based on compressed sensing[J]. Journal of Mine Automation, 2018, 44(8): 67-70. DOI: 10.13272/j.issn.1671-251x.2018020005
    [9]TIAN Zijian, ZHU Yuanzhong, ZHANG Xiangyang, LIU Yuyang. Application of non line-of-sight error suppression method in mine target locatio[J]. Journal of Mine Automation, 2015, 41(6): 78-82. DOI: 10.13272/j.issn.1671-251x.2015.06.019
    [10]WANG Hong-yuan, SHI Lian-min, ZHOU Yue, CHENG Qi-cai, YANG Xiao-ying. Method of Digital Image Processing Based on DSP and S-function and Its Implementatio[J]. Journal of Mine Automation, 2009, 35(3): 24-27.
  • Cited by

    Periodical cited type(10)

    1. 曹瑞升. 泰安煤矿带式输送机通信集控装置设计与应用. 山东煤炭科技. 2025(02): 70-73+78 .
    2. 庞占洲. 视频拼接技术下斗轮机无人值守的可行性研究. 现代电子技术. 2024(04): 134-138 .
    3. 于志强. 基于机器视觉的异物识别系统在输送机保护中的应用. 煤矿安全. 2024(05): 251-256 .
    4. 沈飞,徐刚. 带式输送机撕裂检测技术探讨. 工矿自动化. 2024(S1): 115-118 . 本站查看
    5. 郭康康,赵传鑫. 基于蚁群势场算法的建筑材料运输机器人智能避障方法. 计算机测量与控制. 2024(10): 215-221 .
    6. 王宁. 矿井变电站无人巡检技术研究及应用分析. 西部探矿工程. 2024(12): 99-101 .
    7. 孔国财,殷华,陈志军. 灵新煤矿主运输胶带机升级改造技术方案研究与应用. 价值工程. 2023(13): 113-115 .
    8. 李京泽. 新景矿井下原煤主运输集控系统研究. 能源与节能. 2023(07): 118-120 .
    9. 袁生瑞. 三聚盛矿智能化煤流量监控系统设计. 能源与节能. 2023(09): 61-63 .
    10. 洪志鑫,蒋伟,贾文琪,韩朝晖. OOIP设计在煤矿控制系统的研究与应用. 煤矿机电. 2023(06): 38-42 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (645) PDF downloads (65) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return