Citation: | CAO Xiangang, LI Hu, WANG Peng, et al. A coal foreign object detection method based on cross modal attention fusion[J]. Journal of Mine Automation,2024,50(1):57-65. doi: 10.13272/j.issn.1671-251x.2023110035 |
[1] |
刘峰,郭林峰,赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报,2022,47(1):1-15.
LIU Feng,GUO Linfeng,ZHAO Luzheng. Research on coal safety range and green low-carbon technology path under the dual-carbon background[J]. Journal of China Coal Society,2022,47(1):1-15.
|
[2] |
刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报,2021,46(1):1-15.
LIU Feng,CAO Wenjun,ZHANG Jianming,et al. Current technological innovation and development direction of the 14(th) Five-Year Plan period in China coal industry[J]. Journal of China Coal Society,2021,46(1):1-15.
|
[3] |
曹现刚,刘思颖,王鹏,等. 面向煤矸分拣机器人的煤矸识别定位系统研究[J]. 煤炭科学技术,2022,50(1):237-246. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201024
CAO Xiangang,LIU Siying,WANG Peng,et al. Research on coal gangue identification and positioning system based on coal-gangue sorting robot[J]. Coal Science and Technology,2022,50(1):237-246. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201024
|
[4] |
LI Man,DUAN Yong,HE Xianli,et al. Image positioning and identification method and system for coal and gangue sorting robot[J]. International Journal of Coal Preparation and Utilization,2022,42(4/6):1759-1777.
|
[5] |
赵跃民,张亚东,周恩会,等. 清洁高效干法选煤研究进展与展望[J]. 中国矿业大学学报,2022,51(3):607-616. doi: 10.3969/j.issn.1000-1964.2022.3.zgkydxxb202203023
ZHAO Yuemin,ZHANG Yadong,ZHOU Enhui,et al. Research progress and prospect of clean and efficient dry coal separation[J]. Journal of China University of Mining & Technology,2022,51(3):607-616. doi: 10.3969/j.issn.1000-1964.2022.3.zgkydxxb202203023
|
[6] |
葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46.
GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46.
|
[7] |
WANG Yuanbin,WANG Yujing,DANG Langfei. Video detection of foreign objects on the surface of belt conveyor underground coal mine based on improved SSD[J]. Journal of Ambient Intelligence and Humanized Computing,2023,14:5507-5516. doi: 10.1007/s12652-020-02495-w
|
[8] |
郝帅,张旭,马旭,等. 基于CBAM−YOLOv5的煤矿输送带异物检测[J]. 煤炭学报,2022,47(11):4147-4156.
HAO Shuai,ZHANG Xu,MA Xu,et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society,2022,47(11):4147-4156.
|
[9] |
ZHANG Kanghui,WANG Weidong,LYU Ziqi,et al. Computer vision detection of foreign objects in coal processing using attention CNN[J]. Engineering Applications of Artificial Intelligence,2021,102. DOI: 10.1016/j.engappai.2021.104242.
|
[10] |
任志玲,朱彦存. 改进CenterNet算法的煤矿皮带运输异物识别研究[J]. 控制工程,2023,30(4):703-711.
REN Zhiling,ZHU Yancun. Research on foreign object detection of coal mine belt transportation with improved CenterNet algorithm[J]. Control Engineering of China,2023,30(4):703-711.
|
[11] |
程德强,徐进洋,寇旗旗,等. 融合残差信息轻量级网络的运煤皮带异物分类[J]. 煤炭学报,2022,47(3):1361-1369.
CHENG Deqiang,XU Jinyang,KOU Qiqi,et al. Lightweight network based on residual information for foreign body classification on coal conveyor belt[J]. Journal of China Coal Society,2022,47(3):1361-1369.
|
[12] |
SONG Xinhang,JIANG Shuqiang,HERRANZ L,et al. Learning effective RGB-D representations for scene recognition[J]. IEEE Transactions on Image Processing,2019,28(2):980-993. doi: 10.1109/TIP.2018.2872629
|
[13] |
BALTRUŠAITIS T,AHUJA C,MORENCY L-P. Multimodal machine learning:a survey and taxonomy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(2):423-443. doi: 10.1109/TPAMI.2018.2798607
|
[14] |
GAO Mingliang,JIANG Jun,ZOU Guofeng,et al. RGB-D-based object recognition using multimodal convolutional neural networks:a survey[J]. IEEE Access,2019,7:43110-43136. doi: 10.1109/ACCESS.2019.2907071
|
[15] |
LIN T-Y,DOLLAR P,GIRSHICK R B,et al. Feature pyramid networks for object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:936-944.
|
[16] |
HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al. Deep residual learning for image recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:770-778.
|
[17] |
MA Jiayi,MA Yong,LI Chang. Infrared and visible image fusion methods and applications:a survey[J]. Information Fusion,2019,45:153-178. doi: 10.1016/j.inffus.2018.02.004
|
[18] |
RAMACHANDRAM D,TAYLOR G W. Deep multimodal learning:a survey on recent advances and trends[J]. IEEE Signal Processing Magazine,2017,34(6):96-108. doi: 10.1109/MSP.2017.2738401
|
[19] |
HOU Qibin,ZHOU Daquan,FENG Jiashi. Coordinate attention for efficient mobile network design[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville,2021:13713-13722.
|
[20] |
REN Shaoqing,HE Kaiming,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
[21] |
WANG Xinlong,ZHANG Rufeng,KONG Tao,et al. SOLOv2:dynamic and fast instance segmentation[EB/OL]. [2023-09-12]. https://arxiv.org/abs/2003.10152.
|
[22] |
CHEN Hao,SUN Kunyang,TIAN Zhi,et al. BlendMask:top-down meets bottom-up for instance segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:8570-8578.
|
[23] |
HE Kaiming,GKIOXARI G,DOLLÁR P,et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,42(2):2980-2988.
|
[24] |
HUANG Zhaojin,HUANG Lichao,GONG Yongchao,et al. Mask scoring R-CNN[C]. IEEE Conference on Computer Vision and Pattern Recognition,Washington,2019:6409-6418.
|
[25] |
KE Lei,DANELLJAN M,LI Xia,et al. Mask transfiner for high-quality instance segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,New Orleans,2022:4402-4411.
|