Citation: | TAN Donggui, YUAN Yiping, FAN Panpan. Health status evaluation of CNN-GRU mine motor based on adaptive multi-scale attention mechanism[J]. Journal of Mine Automation,2024,50(2):138-146. DOI: 10.13272/j.issn.1671-251x.2023110024 |
[1] |
SIDDIQUI K M,SAHAY K,GIRI V K,et al. Health monitoring and fault diagnosis in induction motor-a review[J]. International Journal of Advanced Research in Electrical,Electronics and Instrumentation Engineering,2014,3(1):6549-6565.
|
[2] |
MEHALA N. Condition monitoring and fault diagnosis of induction motor using motor current signature analysis[D]. Kurushetra:National Institute of Technology,2010.
|
[3] |
HOU Liqun,BERGMANN N W. Novel industrial wireless sensor networks for machine condition monitoring and fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement,2012,61(10):2787-2798. DOI: 10.1109/TIM.2012.2200817
|
[4] |
单增海,李志远,张旭,等. 基于多传感器信息融合和多粒度级联森林模型的液压泵健康状态评估[J]. 中国机械工程,2021,32(19):2374-2382.
SHAN Zenghai,LI Zhiyuan,ZHANG Xu,et al. Health status assessment of hydraulic pumps based on multi-sensor information fusion and multi-grained cascade forest model[J]. China Mechanical Engineering,2021,32(19):2374-2382.
|
[5] |
雷亚国,许学方,蔡潇,等. 面向机械装备健康监测的数据质量保障方法研究[J]. 机械工程学报,2021,57(4):1-9. DOI: 10.3901/JME.2021.04.001
LEI Yaguo,XU Xuefang,CAI Xiao,et al. Research on data quality assurance for health condition monitoring of machinery[J]. Journal of Mechanical Engineering,2021,57(4):1-9. DOI: 10.3901/JME.2021.04.001
|
[6] |
HU Weijun,ZHANG Yan,LI Lijie. Study of the application of deep convolutional neural networks (CNNs) in processing sensor data and biomedical images[J]. Sensors,2019,19(16). DOI: 10.3390/s19163584.
|
[7] |
LIPTON Z C,BERKOWITZ J,ELKAN C. A critical review of recurrent neural networks for sequence learning[J]. Computer Science,2015. DOI: 10.48550/arXiv.1506.00019.
|
[8] |
YANG Chao,JIANG Wenxiang,GUO Zhongwen. Time series data classification based on dual path CNN-RNN cascade network[J]. IEEE Access,2019,7:155304-155312. DOI: 10.1109/ACCESS.2019.2949287
|
[9] |
樊盼盼,袁逸萍,孙文磊,等. 融合多时段SCADA数据的风电动机组风险态势预测[J]. 计算机集成制造系统,2021,27(7):1993-2004.
FAN Panpan,YUAN Yiping,SUN Wenlei,et al. Risk situation prediction of wind turbine based on multi-period SCADA data[J]. Computer Integrated Manufacturing Systems,2021,27(7):1993-2004.
|
[10] |
袁逸萍,樊盼盼,马占伟. 基于EEMD−MCNN−GRU的滚动轴承剩余使用寿命预测方法:CN202010290930.0[P]. 2022-07-12.
YUAN Yiping,FAN Panpan,MA Zhanwei. Prediction method of remaining service life of rolling bearing based on EEMD-MCNN−GRU:CN202010290930.0[P]. 2022-07-12.
|
[11] |
赵小强,张亚洲. 利用改进卷积神经网络的滚动轴承变工况故障诊断方法[J]. 西安交通大学学报,2021,55(12):108-118.
ZHAO Xiaoqiang,ZHANG Yazhou. Improved CNN-based fault diagnosis method for rolling bearings under variable working conditions[J]. Journal of Xi'an Jiaotong University,2021,55(12):108-118.
|
[12] |
康涛,段蓉凯,杨磊,等. 融合多注意力机制的卷积神经网络轴承故障诊断方法[J]. 西安交通大学学报,2022,56(12):68-77.
KANG Tao,DUAN Rongkai,YANG Lei,et al. Bearing fault diagnosis using convolutional neural network based on a multi-attention mechanism[J]. Journal of Xi'an Jiaotong University,2022,56(12):68-77.
|
[13] |
DING Yifei,JIA Minping,MIAO Qiuhua,et al. Remaining useful life estimation using deep metric transfer learning for kernel regression[J]. Reliability Engineering & System Safety,2021,212. DOI: 10.1016/j.ress.2021.107583.
|
[14] |
谢丽蓉,王斌,包洪印,等. 基于EEMD−WOA−LSSVM的超短期风电功率预测[J]. 太阳能学报,2021,42(7):290-296.
XIE Lirong,WANG Bin,BAO Hongyin,et al. Super-short-term wind power forecasting based on EEMD-WOA-LSSVM[J]. Acta Energiae Solaris Sinica,2021,42(7):290-296.
|
[15] |
MIAO Huihui,LI Bing,SUN Chuang,et al. Joint learning of degradation assessment and RUL prediction for aeroengines via dual-task deep LSTM networks[J]. IEEE Transactions on Industrial Informatics,2019,15(9):5023-5032. DOI: 10.1109/TII.2019.2900295
|
[16] |
HAUKE J,KOSSOWSKI T. Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data[J]. Quaestiones Geographicae,2011,30(2):87-93. DOI: 10.2478/v10117-011-0021-1
|
[17] |
ZHANG Yong,XIN Yuqi,LIU Zhiwei,et al. Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE[J]. Reliability Engineering & System Safety,2022,220. DOI: 10.1016/j.ress.2021.108263.
|
[18] |
LIN Jinshan,CHEN Qian. Fault diagnosis of rolling bearings based on multifractal detrended fluctuation analysis and Mahalanobis distance criterion[J]. Mechanical Systems and Signal Processing,2013,38(2):515-533. DOI: 10.1016/j.ymssp.2012.12.014
|
[19] |
SAVITZKY A,GOLAY M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry,1964,36(8):1627-1639. DOI: 10.1021/ac60214a047
|
[20] |
HARBOLA S,COORS V. One dimensional convolutional neural network architectures for wind prediction[J]. Energy Conversion and Management,2019,195:70-75. DOI: 10.1016/j.enconman.2019.05.007
|
[21] |
LIU Mingde,DING Lin,BAI Yulong. Application of hybrid model based on empirical mode decomposition,novel recurrent neural networks and the ARIMA to wind speed prediction[J]. Energy Conversion and Management,2021,233. DOI: 10.1016/j.enconman.2021.113917.
|
[22] |
NIU Dongxiao,YU Min,SUN Lijie,et al. Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism[J]. Applied Energy,2022,313. DOI: 10.1016/j.apenergy.2022.118801.
|
[23] |
SUN Heng,CHEN Miaomiao,WENG Jian,et al. Anomaly detection for in-vehicle network using CNN-LSTM with attention mechanism[J]. IEEE Transactions on Vehicular Technology,2021,70(10):10880-10893. DOI: 10.1109/TVT.2021.3106940
|
[24] |
KIM T S,SOHN S Y. Multitask learning for health condition identification and remaining useful life prediction:deep convolutional neural network approach[J]. Journal of Intelligent Manufacturing,2021,32(8):2169-2179. DOI: 10.1007/s10845-020-01630-w
|
1. |
李娟,蔡秀花,李越. 基于微处理器的充电站三相电压平衡充电系统. 电子设计工程. 2023(11): 147-151 .
![]() |