Citation: | ZHAO Xiaohu, CHE Tingyu, YE Sheng, et al. Segmentation method of the abnormal area of coal infrared thermal image[J]. Journal of Mine Automation,2022,48(9):92-99. DOI: 10.13272/j.issn.1671-251x.2022030086 |
[1] |
程富起,李忠辉,魏洋,等. 基于单轴压缩红外辐射的煤岩损伤演化特征[J]. 工矿自动化,2018,44(5):64-70. DOI: 10.13272/j.issn.1671-251x.2017110064
CHENG Fuqi,LI Zhonghui,WEI Yang,et al. Coal-rock damage evolution characteristics based on infrared radiation under uniaxial compression[J]. Industry and Mine Automation,2018,44(5):64-70. DOI: 10.13272/j.issn.1671-251x.2017110064
|
[2] |
娄全,李忠辉,李爱国,等. 混凝土变形破坏的红外辐射特征研究[J]. 工矿自动化,2015,41(7):44-48.
LOU Quan,LI Zhonghui,LI Aiguo,et al. Research of infrared radiation characteristics of concrete deformation and failure[J]. Industry and Mine Automation,2015,41(7):44-48.
|
[3] |
TIAN He,LI Zhonghui,SHEN Xiaofan,et al. Identification method of infrared radiation precursor information of coal sample failure and instability under uniaxial compression[J]. Infrared Physics & Technology,2021,119:103957.
|
[4] |
SUN Hai,MA Liqiang,LIU Wei,et al. The response mechanism of acoustic and thermal effect when stress causes rock damage[J]. Applied Acoustics,2021,180:108093. DOI: 10.1016/j.apacoust.2021.108093
|
[5] |
LIU Wei,MA Liqiang,SUN Hai,et al. Using the characteristics of infrared radiation b-value during the rock fracture process to offer a precursor for serious failure[J]. Infrared Physics & Technology,2021,114:103644.
|
[6] |
宋晶晶,李忠辉,张昕,等. 岩样损伤红外热像的归一化直方图表征研究[J]. 红外技术,2021,43(8):777-783.
SONG Jingjing,LI Zhonghui,ZHANG Xin,et al. Research on normalized histogram characterization of infrared thermal image of rock sample damage[J]. Infrared Technology,2021,43(8):777-783.
|
[7] |
CAO K,YUAN Q,XIE G,et al. Infrared radiation characteristics during crack development in water-bearing sandstone[J]. Soil Mechanics and Foundation Engineering,2021,58(3):209-214. DOI: 10.1007/s11204-021-09730-2
|
[8] |
LI Zhonghui,YIN Shan,NIU Yue,et al. Experimental study on the infrared thermal imaging of a coal fracture under the coupled effects of stress and gas[J]. Journal of Natural Gas Science and Engineering,2018,55:444-451. DOI: 10.1016/j.jngse.2018.05.019
|
[9] |
ZHANG Xueliang,WANG Deliang. Deep learning based binaural speech separation in reverberant environments[J]. IEEE/ACM Transactions on Audio,Speech,and Language Processing,2017,25(5):1075-1084. DOI: 10.1109/TASLP.2017.2687104
|
[10] |
WANG Bin,DONG Ming,REN Ming,et al. Automatic fault diagnosis of infrared insulator images based on image instance segmentation and temperature analysis[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(8):5345-5355. DOI: 10.1109/TIM.2020.2965635
|
[11] |
AKRAM M W,LI Guiqiang,JIN Yi,et al. Automatic detection of photovoltaic module defects in infrared images with isolated and develop-model transfer deep learning[J]. Solar Energy,2020,198:175-186. DOI: 10.1016/j.solener.2020.01.055
|
[12] |
BANG H T,PARK S,JEON H. Defect identification in composite materials via thermography and deep learning techniques[J]. Composite Structures,2020,246:112405. DOI: 10.1016/j.compstruct.2020.112405
|
[13] |
DAI Yimian, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]. The IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, 2021: 3560-3569.
|
[14] |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]. International Conference on Machine Learning, Lille, 2015: 448-456.
|
[15] |
SHARMA G, LIU D, MAJI S, et al. Parsenet: a parametric surface fitting network for 3D point clouds[C]. European Conference on Computer Vision, Glasgow, 2020: 261-276.
|
[16] |
WU Yuxin,HE Kaiming. Group normalization[J]. International Journal of Computer Vision,2018,128(3):742-755.
|
[17] |
TAN Chuanqi, SUN Fuchuan, KONG Tao, et al. A survey on deep transfer learning[C]. International Conference on Artificial Neural Networks, Rhodes, 2018: 270-279.
|
[18] |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]. European Conference on Computer Vision, Zurich, 2014: 740-755.
|
[19] |
MILLETARI F, NAVAB N, AHMADI S A. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]. The 4th International Conference on 3D Vision, Stanford, 2016: 565-571.
|
[20] |
SHELHAMER E,LONG J,DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,39(4):640-651.
|
[1] | LI Dianze, XU Huajie, ZHANG Bo. Rock fracture type recognition based on deep feature learning of microseismic signals[J]. Journal of Mine Automation, 2025, 51(3): 156-164. DOI: 10.13272/j.issn.1671-251x.2024080043 |
[2] | GUO Xiaoyuan, ZHU Meiqiang, TIAN Jun, ZHU Beibei. Detection and recognition of unsafe behaviors of underground coal miners based on deep learning[J]. Journal of Mine Automation, 2025, 51(3): 138-147. DOI: 10.13272/j.issn.1671-251x.2025030011 |
[3] | WANG Xufeng. Location trajectory prediction of mining vehicles based on depth learning[J]. Journal of Mine Automation, 2024, 50(S1): 48-52. |
[4] | ZUO Mingming, ZHANG Xi, YANG Zihao, SUN Qifei, ZHANG Mengchao, ZHANG Yuan, LI Hu. Intelligent monitoring method for conveyor belt misalignment based on deep learning[J]. Journal of Mine Automation, 2024, 50(12): 166-172, 182. DOI: 10.13272/j.issn.1671-251x.2024030043 |
[5] | DOU Guidong, BAI Yishuo, WANG Junli, HUANG Bohao, YANG Kang. A fault diagnosis method for mine rolling bearings based on deep learning[J]. Journal of Mine Automation, 2024, 50(1): 96-103, 154. DOI: 10.13272/j.issn.1671-251x.2023070085 |
[6] | LI Jincai, FU Wenlong, WANG Renming, CHEN Xing, MENG Jiaxin. Intelligent fault diagnosis of rolling bearings based on deep network[J]. Journal of Mine Automation, 2022, 48(4): 78-88. DOI: 10.13272/j.issn.1671-251x.2022010008 |
[7] | HU Jinghao, GAO Yan, ZHANG Hongjuan, JIN Baoquan. Research on the identification method of non-coal foreign object ofbelt conveyor based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 57-62. DOI: 10.13272/j.issn.1671-251x.2021020041 |
[8] | ZHANG Mengchao, ZHOU Manshan, ZHANG Yuan, YU Yan, LI Hu. Damage detection method for mine conveyor belt based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 51-56. DOI: 10.13272/j.issn.1671-251x.2021040010 |
[9] | LI Changwen, CHENG Zeyin, ZHANG Xiaogang, DING Hua. Fault diagnosis of shearer rocker gear based on deep residual network[J]. Journal of Mine Automation, 2021, 47(3): 71-78. DOI: 10.13272/j.issn.1671-251x.2020110043 |
[10] | TANG Shiyu, ZHU Aichun, ZHANG Sai, CAO Qingfeng, CUI Ran, HUA Gang. Target detection of underground personnel based on deep convolutional neural network[J]. Journal of Mine Automation, 2018, 44(11): 32-36. DOI: 10.13272/j.issn.1671—251x.2018050068 |
1. |
闫晓霞. 矿井主通风机不停风倒机控制的研究与实现. 机械工程与自动化. 2024(01): 213-215 .
![]() | |
2. |
蔡佳浩,王前进,辅小荣,马小平. 矿井主要通风机切换过程供给风量优化控制研究. 工矿自动化. 2023(01): 140-145+161 .
![]() | |
3. |
任春美. 基于深度学习的矿用通风机运行状态监测及报警系统研究. 煤炭技术. 2023(04): 199-201 .
![]() | |
4. |
史俊亮. 煤矿通风机不停风倒机控制系统设计应用. 机械研究与应用. 2023(02): 105-107 .
![]() | |
5. |
王静. 煤矿主通风机控制系统控制器优选. 机械管理开发. 2023(10): 177-178 .
![]() | |
6. |
刘通海. 矿井局部通风机不同控制方式对风量调节效果的对比分析. 机械管理开发. 2022(05): 178-179 .
![]() | |
7. |
王瑜,刘艳华. 隧道工程信息化全过程自适应施工自动控制系统. 自动化与仪器仪表. 2021(07): 100-103 .
![]() | |
8. |
唐翠微. 一种基于混合神经网络的机械手移动轨迹自动控制技术研究. 机床与液压. 2021(22): 86-90 .
![]() | |
9. |
蔺素宏,安高成,纪宇龙,郭宇航. 电液伺服变量泵变量机构的非线性控制. 液压与气动. 2020(03): 107-112 .
![]() | |
10. |
胡晨飞. 煤矿通风系统自动化技术的研究与应用. 山西煤炭. 2020(04): 62-65 .
![]() |