TAN Faming, WANG Qi. State of charge prediction for mine-used power battery[J]. Journal of Mine Automation, 2019, 45(1): 70-75. DOI: 10.13272/j.issn.1671-251x.2018060051
Citation: TAN Faming, WANG Qi. State of charge prediction for mine-used power battery[J]. Journal of Mine Automation, 2019, 45(1): 70-75. DOI: 10.13272/j.issn.1671-251x.2018060051

State of charge prediction for mine-used power battery

More Information
  • It was difficult to optimize parameters of regularization and kernel function when least squares support vector machine(LSSVM) was used to predict state of charge(SOC) of mine-used power battery, and grey wolf optimization(GWO) algorithm was prone to early maturity, poor stability and local optimization when solving constraint optimization problem alone. In view of above problems, on the basis of differential evolution GWO(DE-GWO) algorithm, non-linear convergence factor in the form of exponential function is used to improve the DE-GWO algorithm. The non-linear convergence factor has low attenuation rate in the early stage of iterative process and the global optimal solution can better be found, while it has high attenuation rate at the end of iterative process and the local optimal solution can be found more accurately, which effectively balances global search ability and local search ability. The experimental results show that the maximum absolute error and the maximum relative error of SOC prediction model for mine-used power battery are 3.7% and 5.3% respectively after LSSVM parameters are optimized by the improved DE-GWO algorithm.
  • Related Articles

    [1]CHEN Xianzhan, SHEN Yicheng, HONG Feiyang, SHI Shen. Prediction of gas concentration in coal mine excavation working face[J]. Journal of Mine Automation, 2024, 50(4): 128-132. DOI: 10.13272/j.issn.1671-251x.18122
    [2]HUI Ali, LU Weiqiang, RONG Xiang, WEI Lipeng, CHEN Wenya. Research on fault diagnosis method of asynchronous motor based on Park-WPT and WOA-LSSVM[J]. Journal of Mine Automation, 2021, 47(12): 106-113. DOI: 10.13272/j.issn.1671-251x.2021070035
    [3]SUN Tao, DAI Bangwu, CHU Fei, MA Xiaoping. Performance prediction method for large-centrifugal ventilator[J]. Journal of Mine Automation, 2019, 45(2): 70-74. DOI: 10.13272/j.issn.1671-251x.2018100014
    [4]WANG Anyi, GUO Shiku. Prediction of field intensity in mine tunnel based on LS-SVM[J]. Journal of Mine Automation, 2014, 40(10): 36-40. DOI: 10.13272/j.issn.1671-251x.2014.10.011
    [5]WANG Yong, CHENG Can, DAI Ming-jun, SUN Yong. An Optimized Method for Semi-supervised Support Vector Machines[J]. Journal of Mine Automation, 2010, 36(12): 47-50.
    [6]WANG Yong-chao, SUN Huai-xiang. Application of Access and MCGS in Loading System of Main Shaft[J]. Journal of Mine Automation, 2010, 36(5): 94-97.
    [7]ZHOU Xin, MIAO Chang-yun, LI Yan-feng, WU Zhi-gang. Optimization of CS-ACELP Voice Code Algorithm and Its Implementation on DSP[J]. Journal of Mine Automation, 2009, 35(12): 69-72.
    [8]LIU Rui-fang, MEI Xiao-a. Nonlinear Correction of Methane Sensor Based on Least Square Support Vector Machine[J]. Journal of Mine Automation, 2009, 35(5): 8-12.
    [9]CAO Wen, SUN Wei, ZHAO Hui. Application Based on Ethernet of Microsoft Office Access in Query System of RSView Report Formas[J]. Journal of Mine Automation, 2007, 33(5): 123-124.
    [10]LV Gang, LI Yu-dong, JIAO Liu-cheng. Application of Two-mode Fuzzy Controller with Self-organizing and Self-regulating Factor in PMLSM Precise Servo-system[J]. Journal of Mine Automation, 2004, 30(2): 1-4.
  • Cited by

    Periodical cited type(1)

    1. 陈继永,吴兆宏,李金喜. 基于容量增量法的防爆锂电池老化指标分析. 工矿自动化. 2019(12): 29-34 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (113) PDF downloads (13) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return