Citation: | CHEN Xianzhan, SHEN Yicheng, HONG Feiyang, et al. Prediction of gas concentration in coal mine excavation working face[J]. Journal of Mine Automation,2024,50(4):128-132. doi: 10.13272/j.issn.1671-251x.18122 |
[1] |
王德忠,朱国宏,王禹,等. 基于GA−LSTM的综采面瓦斯浓度预测模型[J]. 煤炭技术,2023,42(1):219-221.
WANG Dezhong,ZHU Guohong,WANG Yu,et al. Prediction model of gas concentration in fully mechanized mining face based on GA-LSTM[J]. Coal Technology,2023,42(1):219-221.
|
[2] |
苏培东,张睿,杜宇本,等. 基于Kriging估值法的非煤隧道瓦斯预测[J]. 地下空间与工程学报,2021,17(3):953-960.
SU Peidong,ZHANG Rui,DU Yuben,et al. Prediction of gas spatial distribution in non-coal strata tunnel by Kriging method[J]. Chinese Journal of Underground Space and Engineering,2021,17(3):953-960.
|
[3] |
梁运培,栗小雨,李全贵,等. 基于CS−LSTM的工作面瓦斯浓度智能预测研究[J]. 矿业安全与环保,2022,49(4):80-86.
LIANG Yunpei,LI Xiaoyu,LI Quangui,et al. Research on intelligent prediction of gas concentration in working face based on CS-LSTM[J]. Mining Safety & Environmental Protection,2022,49(4):80-86.
|
[4] |
贾澎涛,张智远,梁荣,等. 基于PSO−CNN−aBiGRU的瓦斯浓度预测方法[J]. 矿业研究与开发,2021,41(12):76-81.
JIA Pengtao,ZHANG Zhiyuan,LIANG Rong,et al. Gas concentration prediction method based on PSO-CNN-aBiGRU[J]. Mining Research and Development,2021,41(12):76-81.
|
[5] |
刘莹,杨超宇. 基于多因素的LSTM瓦斯浓度预测模型[J]. 中国安全生产科学技术,2022,18(1):108-113.
LIU Ying,YANG Chaoyu. LSTM gas concentration prediction model based on multiple factors[J]. Journal of Safety Science and Technology,2022,18(1):108-113.
|
[6] |
WANG Zhiming,MIAO Yanzi,LI Shoujun,et al. Prediction of mine gas concentration based on multi-variable time-delayed DOGM(1,N) model[J]. The Journal of Grey System,2022,34(1):70-83.
|
[7] |
程浩东,韩萌,张妮,等. 基于滑动窗口模型的数据流闭合高效用项集挖掘[J]. 计算机研究与发展,2021,58(11):2500-2514.
CHENG Haodong,HAN Meng,ZHANG Ni,et al. Closed high utility itemsets mining over data stream based on sliding window model[J]. Journal of Computer Research and Development,2021,58(11):2500-2514.
|
[8] |
刘丹丹. 基于EMD的GNSS时间序列异常值探测算法[J]. 地球物理学进展,2021,36(5):1865-1873.
LIU Dandan. New method of outlier detection for GNSS coordinate time series based on EMD approach[J]. Progress in Geophysics,2021,36(5):1865-1873.
|
[9] |
郑欣彤,边婷婷,张德强,等. ARIMA和LSTM方法长时间温度观测数据缺失值插补的比较[J]. 计算机应用,2022,42(增刊1):130-135.
ZHENG Xintong,BIAN Tingting,ZHANG Deqiang,et al. Comparison of ARIMA and LSTM methods for interpolation of missing values of long-time temperature observations[J]. Journal of Computer Applications,2022,42(S1):130-135.
|
[10] |
吴哲,黄蓉,田朝薇. 时间分数阶Black−Scholes方程的重心Lagrange插值配点法[J]. 华侨大学学报(自然科学版),2023,44(2):269-276.
WU Zhe,HUANG Rong,TIAN Zhaowei. Barycentric Lagrange interpolation collocation method for time-fractional Black-Scholes equation[J]. Journal of Huaqiao University(Natural Science),2023,44(2):269-276.
|
[11] |
钟凯强,周建平,薛瑞雷,等. 一种采用Lagrange插值的相贯线简化算法[J]. 热加工工艺,2021,50(15):131-135,140.
ZHONG Kaiqiang,ZHOU Jianping,XUE Ruilei,et al. A intersecting line simplification algorithm using Lagrange interpolation[J]. Hot Working Technology,2021,50(15):131-135,140.
|
[12] |
吴虎,孔勇,王振伟,等. 基于EMD分解与1−D CNN算法的光纤振动信号的识别[J]. 激光与红外,2021,51(8):1043-1049.
WU Hu,KONG Yong,WANG Zhenwei,et al. Recognition of optical fiber vibration signals based on VMD_CNN algorithm[J]. Laser & Infrared,2021,51(8):1043-1049.
|
[13] |
刘兵,郑承利. 基于EMD特征提取的高频面板数据自适应聚类方法[J]. 统计与决策,2022,38(10):16-20.
LIU Bing,ZHENG Chengli. Adaptive clustering method for high frequency panel data based on EMD feature extraction[J]. Statistics & Decision,2022,38(10):16-20.
|
[14] |
韩丽,李梦洁,乔妍. 基于低频波动挖掘和高频校正的风电超短期预测[J]. 电网技术,2022,46(7):2750-2758.
HAN Li,LI Mengjie,QIAO Yan. Ultra-short-term prediction of wind power based on low-frequency fluctuation mining and high-frequency correction[J]. Power System Technology,2022,46(7):2750-2758.
|
[15] |
苏娟,方舒,邢广进,等. 考虑需求价格弹性的CS−SVM短期负荷预测方法[J]. 江苏大学学报(自然科学版),2022,43(3):319-324. doi: 10.3969/j.issn.1671-7775.2022.03.011
SU Juan,FANG Shu,XING Guangjin,et al. Short-term load forecasting method based on cuckoo search algorithm and support vector machine considering demand price elasticity[J]. Journal of Jiangsu University(Natural Science Edition),2022,43(3):319-324. doi: 10.3969/j.issn.1671-7775.2022.03.011
|
[16] |
付乐天,李鹏,高莲. 考虑样本异常值的改进最小二乘支持向量机算法[J]. 仪器仪表学报,2021,42(6):179-190.
FU Letian,LI Peng,GAO Lian. Improved LSSVM algorithm considering sample outliers[J]. Chinese Journal of Scientific Instrument,2021,42(6):179-190.
|
[17] |
李森娟,张萍,岳大为,等. 基于支持向量机的风电机组故障预测[J]. 计算机仿真,2022,39(5):84-88,180.
LI Senjuan,ZHANG Ping,YUE Dawei,et al. Fault prediction of wind turbine based on support vector machine[J]. Computer Simulation,2022,39(5):84-88,180.
|
[18] |
张皓,李东升. 复分析Hilbert变换计算理论及非线性检测准则[J]. 振动工程学报,2022,35(6):1336-1345.
ZHANG Hao,LI Dongsheng. Hilbert transform calculated by complex analysis theory and its nonlinear detection criterion[J]. Journal of Vibration Engineering,2022,35(6):1336-1345.
|
[19] |
王媛彬,李媛媛,韩骞,等. 基于PCA−BO−XGBoost的矿井回采工作面瓦斯涌出量预测[J]. 西安科技大学学报,2022,42(2):371-379.
WANG Yuanbin,LI Yuanyuan,HAN Qian,et al. Gas emission prediction of the stope in coal mine based on PCA-BO-XGBoost[J]. Journal of Xi'an University of Science and Technology,2022,42(2):371-379.
|
[20] |
赵伟,陈培红,曹阳. 基于ACSOA−BP神经网络的瓦斯含量预测模型[J]. 煤矿安全,2022,53(1):174-180.
ZHAO Wei,CHEN Peihong,CAO Yang. Prediction model of coal seam gas content based on ACSOA optimized BP neural network[J]. Safety in Coal Mines,2022,53(1):174-180.
|
[21] |
廖巍. 复杂地质条件下瓦斯含量精准预测研究与系统开发[J]. 煤炭工程,2022,54(5):142-145.
LIAO Wei. Accurate prediction of gas content and system development under complex geological conditions[J]. Coal Engineering,2022,54(5):142-145.
|