LIANG Weifeng, SUN Jiping, PENG Ming, et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128, 163. DOI: 10.13272/j.issn.1671-251x.18045
Citation: LIANG Weifeng, SUN Jiping, PENG Ming, et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128, 163. DOI: 10.13272/j.issn.1671-251x.18045

Research on safe power threshold of radio wave explosion-proof in coal mine

More Information
  • Received Date: October 13, 2022
  • Revised Date: December 13, 2022
  • Available Online: December 22, 2022
  • In order to prevent gas explosion caused by radio waves emitted by wireless equipment in the coal mine, the power and energy of radio waves in coal mines should be limited. This paper introduces the safety power threshold of continuous radio wave explosion-proof specified in different standards. ① GB/T 3836.1-2021 Explosive atmospheres-Part 1: Equipment-General requirements and the international standard IEC 60079-0:2017 Explosive atmospheres-Part 0: Equipment-General requirements refer to the European standard CLC/TR 50427:2004 Assessment of inadvertent ignition of flammable atmospheres by radio-frequency radiation-Guide. When there is no slender structure object (such as a crane) that can be used as a receiving antenna in an explosive environment, the clause that the explosion-proof safety power threshold of continuous radio wave in Class I environment (representative gas is methane) is 8 W is omitted. It is indiscriminately stipulated that the safe power threshold of continuous radio wave explosion-proof in Class I environment is 6 W. ② The British Standard BS 6656:1991 Guide to prevention of inadvertent ignition of flammable atmospheres by radio-frequency radiation specifies that for continuous radio-wave operating frequencies greater than 30 MHz in a Class I environment, the safe power threshold for continuous radio-wave explosion-proof is 8 W, Whether there is a crane or other slender annular structure object. ③ The British Standard BS 6656:2002 Assessment of inadvertent ignition of flammable atmospheres by radio-frequency radiation - Guide and the European Standard CLC/TR 50427:2004 both specify a safety power threshold of 8 W for continuous radio-wave explosion-proof in Class I environments without slender annular structures such as cranes. The safe power threshold of continuous radio wave explosion-proof in Class I environment with slender annular structures such as cranes is 6 W. The characteristic of the underground environment and equipment in the coal mine are analyzed. Generally, there is no crane underground. The underground coal mine is a confined space, with a long roadway but a small roadway section. Cable, water pipe, rail, steel wire rope, overhead line, tape rack and other axial conductors laid along the roadway axis are thin and long, but will not form a ring antenna conducive to radio wave reception. Transverse conductors such as roadway I-beam support can form a ring antenna conducive to radio wave reception. However, the section of the I-steel conductor is large, which does not meet the characteristics of slender structure. The hydraulic support in the fully mechanized working face can form an annular structure. However, the hydraulic support jack divides it into multiple annular structures. The support conductor section is large, which does not meet the characteristics of slender structure. It is pointed out that before the explosion-proof safety power threshold of continuous radio wave in coal mine is implemented to 6 W, the mine wireless communication systems such as leakage, induction, through-the-ground and multi-base stations have been widely used in the coal mine. And there is no case of gas and coal dust explosion accident. Therefore, the threshold of explosion-proof safety power of radio wave in the coal mine is set as 6 W without distinction, which lacks of theoretical analysis and experimental verification. In particular, 5G, WiFi 6, UWB, ZigBee and other mining mobile communication systems and personnel and vehicle positioning system working frequency is higher. Therefore, the coal mine continuous radio wave explosion-proof safety power threshold should be 8 W.
  • [1]
    EXCELL P S, BUTCHER G H, HOWSON D P. Towards a safety standard for radiofrequency hazards to flammable mixtures—progress and problems[C]. IEEE International Symposium on Electromagnetic Compatibility, San Diego, 1979: 1-5.
    [2]
    BURSTOW D J,LOVELAND R J,TOMLINSON R,et al. Radio frequency ignition hazards[J]. Radio and Electronic Engineer,1981,51(4):151-169. DOI: 10.1049/ree.1981.0021
    [3]
    HOWSON D P,EXCELL P S,BUTCHER G H. Ignition of flammable gas/air mixtures by sparks from 2 MHz and 9 MHz sources[J]. Radio and Electronic Engineer,1981,51(4):170-174. DOI: 10.1049/ree.1981.0022
    [4]
    ROSENFELD J L J,STRACHAN D C,TROMANS P S,et al. Experiments on the incendivity of radio-frequency,breakflash discharges (1.8-21 MHz c. w. )[J]. Radio and Electronic Engineer,1981,51(4):175-186. DOI: 10.1049/ree.1981.0023
    [5]
    MADDOCKS A J,JACKSON G A. Measurements of radio frequency voltage and power induced in structures on the St Fergus gas terminals[J]. Radio and Electronic Engineer,1981,51(4):187-194. DOI: 10.1049/ree.1981.0024
    [6]
    ROBERTSON S S J,LOVELAND R J. Radio-frequency ignition hazards:a review[J]. Physical Science,Measurement and Instrumentation,Management and Education-Reviews,IEE Proceedings A,1981,128(9):607-614.
    [7]
    EXCELL P S,MADDOCKS A J. Assessment of worst-case receiving antenna characteristics of metallic industrial structures. Part 1:Electrically-small structures[J]. Journal of the Institution of Electronic and Radio Engineers,1986,56(1):27-32. DOI: 10.1049/jiere.1986.0006
    [8]
    EXCELL P S,HOWSON D P. Assessment of worst-case receiving antenna characteristics of metallic industrial structures. Part 2:Electrically-large structures[J]. Journal of the Institution of Electronic and Radio Engineers,1986,56(1):33-36. DOI: 10.1049/jiere.1986.0008
    [9]
    JAMES R A,EXCELL P S,KELLER A Z. Probabilistic factors in radio-frequency ignition and detonation hazards analyses[J]. Reliability Engineering,1987,17(2):139-153. DOI: 10.1016/0143-8174(87)90012-6
    [10]
    EXCELL P S,JAMES R A,KELLER A Z. Strategic problems in the drafting and implementation of safety guides for the prevention of radio frequency radiation hazards[J]. International Journal of Quality & Reliability Management,1988,5(5):47-61.
    [11]
    孙继平,贾倪. 矿井电磁波能量安全性研究[J]. 中国矿业大学学报,2013,42(6):1002-1008. DOI: 10.3969/j.issn.1000-1964.2013.06.018

    SUN Jiping,JIA Ni. Safety study of electromagnetic wave energy in coal mine[J]. Journal of China University of Mining & Technology,2013,42(6):1002-1008. DOI: 10.3969/j.issn.1000-1964.2013.06.018
    [12]
    刘晓阳,马新彦,刘坤,等. 矿井5G电磁波辐射能量安全性研究[J]. 工矿自动化,2021,47(7):85-91. DOI: 10.13272/j.issn.1671-251x.2020090050

    LIU Xiaoyang,MA Xinyan,LIU Kun,et al. Research on the safety of 5G electromagnetic wave radiation energy in coal mine[J]. Industry and Mine Automation,2021,47(7):85-91. DOI: 10.13272/j.issn.1671-251x.2020090050
    [13]
    MENG Jijian. Research on wireless power transmission in coal mine based on explosion-proof safety[C]. IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference, Chongqing, 2021: 1700-1704.
    [14]
    郑小磊,梁宏. 煤矿5G通信系统安全技术要求和检验方法[J]. 工矿自动化,2021,47(3):9-13,33. DOI: 10.13272/j.issn.1671-251x.2021010066

    ZHENG Xiaolei,LIANG Hong. Safety technical requirements and inspection methods of coal mine 5G communication system[J]. Industry and Mine Automation,2021,47(3):9-13,33. DOI: 10.13272/j.issn.1671-251x.2021010066
    [15]
    张勇. 煤矿井下无线射频近场谐振耦合防爆电磁能仿真分析[J]. 煤矿安全,2022,53(8):134-138. DOI: 10.13347/j.cnki.mkaq.2022.08.021

    ZHANG Yong. Simulation analysis of explosion-proof electromagnetic energy coupled with radio frequency near field resonance in underground coal mine[J]. Safety in Coal Mines,2022,53(8):134-138. DOI: 10.13347/j.cnki.mkaq.2022.08.021
  • Related Articles

    [1]LIU Yan, ZHANG Li-bin, JIANG Ze. Design of Mine-used Infrared Methane Sensor with Compensation of Temperature and Pressure[J]. Journal of Mine Automation, 2012, 38(8): 7-10.
    [2]WANG Hong-jian, TANG Mao-feng, WANG Xue-ming, LIU Yan, SHENG Nan. Design of Mine-used High-precision Oxygen Sensor with Temperature Compensatio[J]. Journal of Mine Automation, 2012, 38(5): 63-65.
    [3]YAN A-ren, LIU Feng. Design of Temperature Instrument of WIA-PA Wireless Industrial Network[J]. Journal of Mine Automation, 2011, 37(10): 12-15.
    [4]WANG Li-hua, GAO Jin-yu, WANG Yan-jie. Design of Boiler Temperature Control System Based on DSP and Current Loop[J]. Journal of Mine Automation, 2011, 37(7): 98-101.
    [5]MI Lan, JI Mei, MENG Lin-shan, GU Lin-zhu. Design of Portable Ultrasonic Ranger Based on MSP430F149[J]. Journal of Mine Automation, 2011, 37(6): 122-124.
    [6]WANG Jun-qi. Design of 1-wire Bus Temperature Measurement System Based on DSP[J]. Journal of Mine Automation, 2010, 36(2): 35-38.
    [7]MA Tian-bing, ZHAO Yao-jun, ZHANG Hui, YANG Yuan-hui. Research of Temperature Compensation of Optical Fiber Current Sensor Based on Matlab[J]. Journal of Mine Automation, 2009, 35(9): 62-64.
    [8]GUO Xiu-cai, SHU Huai-li. Temperature Control System Based on PID Neural Network[J]. Journal of Mine Automation, 2008, 34(3): 30-32.
    [9]JIA Zong-pu, LIU Qun-po, JIA Xiang-zhi, WANG Fu-zhong. Application of On-line Fuzzy and Self-adaptive PID in Temperature Control of Diamond Synthesizing[J]. Journal of Mine Automation, 2004, 30(2): 32-34.
    [10]SUI Bi-xia, HE Feng-you. Development of Intelligent Analyzing and Testing Apparatus for PH Values/Potentials[J]. Journal of Mine Automation, 1999, 25(6): 34-35.
  • Cited by

    Periodical cited type(12)

    1. 庞义辉,关书方,姜志刚,白云,李鹏. 综放工作面围岩控制与智能化放煤技术现状及展望. 工矿自动化. 2024(09): 20-27 . 本站查看
    2. 杨艺,王圣文,崔科飞,费树岷. 基于模糊深度Q网络的放煤智能决策方法. 工矿自动化. 2023(04): 78-85 . 本站查看
    3. 杨艺,高阳,罗开成,王科平,费树岷. 基于YADE的综放工作面进刀放煤三维仿真. 煤矿安全. 2022(01): 167-173 .
    4. 刘军锋,高亮亮,尹春雷. 智能放煤技术在某矿综放工作面的研究与应用. 煤炭技术. 2022(02): 58-60 .
    5. 罗开成,高阳,杨艺,常亚军,袁瑞甫. 基于均值偏差奖赏函数的放煤口控制策略研究. 煤炭工程. 2022(09): 105-111 .
    6. 杨艺,李庆元,李化敏,李东印,杨延麟,费树岷. 基于批量式强化学习的群组放煤智能决策研究. 煤炭科学技术. 2022(10): 188-197 .
    7. 聂天文,韩金博. 倾斜特厚煤层工作面初次放顶方案设计. 陕西煤炭. 2021(03): 101-105 .
    8. 王启鑫. 智能化放顶煤开采的精确放煤控制技术. 当代化工研究. 2021(14): 67-68 .
    9. 高有进,杨艺,常亚军,张幸福,李国威,连东辉,崔科飞,武学艺,魏宗杰. 综采工作面智能化关键技术现状与展望. 煤炭科学技术. 2021(08): 1-22 .
    10. 李伟. 综放开采智能化控制系统研发与应用. 煤炭科学技术. 2021(10): 128-135 .
    11. 张学亮,刘清,郎瑞峰,邵斌,吴少伟. 厚煤层智能放煤工艺及精准控制关键技术研究. 煤炭工程. 2020(09): 1-6 .
    12. 李长营. 综采放顶煤工艺参数仿真优化. 当代化工研究. 2020(18): 144-145 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1355) PDF downloads (75) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return