GAO Haiyue, WANG Kai, WANG Baobing, et al. Positioning method for underground unmanned aerial vehicles in coal mines based on global point cloud map[J]. Journal of Mine Automation,2023,49(8):81-87, 133. DOI: 10.13272/j.issn.1671-251x.2022110024
Citation: GAO Haiyue, WANG Kai, WANG Baobing, et al. Positioning method for underground unmanned aerial vehicles in coal mines based on global point cloud map[J]. Journal of Mine Automation,2023,49(8):81-87, 133. DOI: 10.13272/j.issn.1671-251x.2022110024

Positioning method for underground unmanned aerial vehicles in coal mines based on global point cloud map

More Information
  • Received Date: November 06, 2022
  • Revised Date: August 15, 2023
  • Available Online: September 03, 2023
  • When simultaneous localization and mapping (SLAM) technology is applied to autonomous positioning of unmanned aerial vehicles in coal mines, the use of feature points to construct maps can easily lead to degradation issues, resulting in inaccurate positioning. Moreover, due to its use of the body as a reference coordinate system, global positioning cannot be achieved. In order to solve the problems, a positioning method for underground unmanned aerial vehicles (UAV) in coal mines based on global point cloud map is proposed. The method uses Fast-LIO2 algorithm as the lidar SLAM algorithm to obtain UAV position and attitude estimation. An iterative nearest-neighbor algorithm is used for two-step matching of the acquired real-time lidar point cloud and the global point cloud map to achieve UAV position and attitude correction. To address the issue of point cloud matching speed not ensuring real-time positioning due to the excessive number of point clouds, a time-based position and attitude output strategy is designed to increase the frequency of outputting UAV position and attitude data. The SLAM precision and position and attitude correction effect of the UAV positioning method are tested in a 1 000 m underground coal mine roadway. The results show that in long-distance roadway environments, the cumulative positioning error of the Fast-LIO2 algorithm is less than 1 m, and is less than 0.3 m in the range of 600 m or more, which is significantly smaller than the cumulative positioning errors of LOAM-Livox algorithm and LIO-Livox algorithm. The position and attitude estimation output by the Fast-LIO2 algorithm has been corrected by the correction algorithm, and all flight paths are located in the global point cloud map, verifying the effectiveness of the position and attitude correction algorithm. The time consumption of single SLAM algorithm operation is 14.83 ms, the one of single position and attitude correction is 883 ms, and the output frequency of position and attitude data is 10 Hz, meeting the real-time requirements of UAV positioning.
  • [1]
    郑学召,童鑫,张铎,等. 矿井危险区域多旋翼侦测无人机关键技术探讨[J]. 工矿自动化,2020,46(12):48-56. DOI: 10.13272/j.issn.1671-251x.17653

    ZHENG Xuezhao,TONG Xin,ZHANG Duo,et al. Discussion on key technologies of multi-rotor detection UAVs in mine dangerous area[J]. Industry and Mine Automation,2020,46(12):48-56. DOI: 10.13272/j.issn.1671-251x.17653
    [2]
    吕文红,夏双双,魏博文,等. 基于改进A*算法的灾后井下无人机航迹规划[J]. 工矿自动化,2018,44(5):85-90.

    LYU Wenhong,XIA Shuangshuang,WEI Bowen,et al. Route planning of unmanned aerial vehicle in post-disaster underground based on improved A* algorithm[J]. Industry and Mine Automation,2018,44(5):85-90.
    [3]
    张铎,吴佩利,郑学召,等. 矿井侦测无人机研究现状与发展趋势[J]. 工矿自动化,2020,46(7):76-81.

    ZHANG Duo,WU Peili,ZHENG Xuezhao,et al. Research status and development trend of mine detection unmanned aerial vehicle[J]. Industry and Mine Automation,2020,46(7):76-81.
    [4]
    李标. 基于无人机技术的煤矿带式输送机巡检方案[J]. 煤矿安全,2020,51(7):128-131.

    LI Biao. Inspection scheme of coal mine belt conveyor based on UAV technology[J]. Safety in Coal Mines,2020,51(7):128-131.
    [5]
    王岩,马宏伟,王星,等. 基于迭代最近点的井下无人机实时位姿估计[J]. 工矿自动化,2019,45(9):25-29.

    WANG Yan,MA Hongwei,WANG Xing,et al. Real-time pose estimation of underground unmanned aerial vehicle based on ICP method[J]. Industry and Mine Automation,2019,45(9):25-29.
    [6]
    夏双双,殷立杰. 煤矿井下无人机SLAM定位算法研究[J]. 电子质量,2017(12):56-61,66. DOI: 10.3969/j.issn.1003-0107.2017.12.015

    XIA Shuangshuang,YIN Lijie. Research on SLAM location algorithm of downhole UAV[J]. Electronics Quality,2017(12):56-61,66. DOI: 10.3969/j.issn.1003-0107.2017.12.015
    [7]
    江传龙,黄宇昊,韩超,等. 井下巡检无人机系统设计及定位与避障技术[J]. 机械设计与研究,2021,37(4):38-42,48.

    JIANG Chuanlong,HUANG Yuhao,HAN Chao,et al. Design of underground inspection UAV system and studyof positioning and obstacle avoidance[J]. Machine Design & Research,2021,37(4):38-42,48.
    [8]
    ZHANG Ji, SINGH S. Visual-lidar odometry and mapping: low-drift, robust, and fast[C]. IEEE International Conference on Robotics and Automation, Piscataway, 2015: 2174-2181.
    [9]
    ZHANG Ji,SINGH S. Low-drift and real-time lidar odometry and mapping[J]. Autonomous Robots,2017,41(2):401-416. DOI: 10.1007/s10514-016-9548-2
    [10]
    SHAN Tixiao, ENGLOT B. LeGO-LOAM: lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, Piscataway, 2018: 4758-4765.
    [11]
    SHAN Tixiao, ENGLOT B, MEYERS D, et al. LIO-SAM: tightly-coupled lidar inertial odometry via smoothing and mapping[C]. IEEE International Conference on Intelligent Robots and Systems, Las Vegas, 2020: 5135-5142.
    [12]
    CHAO Qin, YE Haoyang, PRANATA C E, et al. LINS: a lidar-inertial state estimator for robust and efficient navigation[C]. IEEE International Conference on Robotics and Automation, Piscataway, 2020: 8899-8906.
    [13]
    杨林,马宏伟,王岩. 基于激光惯性融合的煤矿井下移动机器人SLAM算法[J]. 煤炭学报,2022,47(9):3523-3534. DOI: 10.13225/j.cnki.jccs.2022.0506

    YANG Lin,MA Hongwei,WANG Yan. LiDAR-inertial SLAM for mobile robot in underground coal mine[J]. Journal of China Coal Society,2022,47(9):3523-3534. DOI: 10.13225/j.cnki.jccs.2022.0506
    [14]
    邹筱瑜,黄鑫淼,王忠宾,等. 基于集成式因子图优化的煤矿巷道移动机器人三维地图构建[J]. 工矿自动化,2022,48(12):57-67,92. DOI: 10.13272/j.issn.1671-251x.2022100041

    ZOU Xiaoyu,HUANG Xinmiao,WANG Zhongbin,et al. 3D map construction of coal mine roadway mobile robot based on integrated factor graph optimization[J]. Journal of Mine Automation,2022,48(12):57-67,92. DOI: 10.13272/j.issn.1671-251x.2022100041
    [15]
    李猛钢,胡而已,朱华. 煤矿移动机器人LiDAR/IMU紧耦合SLAM方法[J]. 工矿自动化,2022,48(12):68-78. DOI: 10.13272/j.issn.1671-251x.2022100061

    LI Menggang,HU Eryi,ZHU Hua. LiDAR/IMU tightly-coupled SLAM method for coal mine mobile robot[J]. Journal of Mine Automation,2022,48(12):68-78. DOI: 10.13272/j.issn.1671-251x.2022100061
    [16]
    马艾强,姚顽强,蔺小虎,等. 面向煤矿巷道环境的LiDAR与IMU融合定位与建图方法[J]. 工矿自动化,2022,48(12):49-56. DOI: 10.13272/j.issn.1671-251x.2022070007

    MA Aiqiang,YAO Wanqiang,LIN Xiaohu,et al. Coal mine roadway environment-oriented LiDAR and IMU fusion positioning and mapping method[J]. Journal of Mine Automation,2022,48(12):49-56. DOI: 10.13272/j.issn.1671-251x.2022070007
    [17]
    XU Wei,ZHANG Fu. FAST-LIO:a fast,robust LiDAR-Inertial odometry package by tightly-coupled iterated Kalman filter[J]. IEEE Robotics and Automation Letters,2021,6(2):3317-3324. DOI: 10.1109/LRA.2021.3064227
    [18]
    XU Wei,CAI Yixi,HE Dongjiao,et al. FAST-LIO2:fast direct LiDAR-Inertial odometry[J]. IEEE Transactions on Robotics,2022,38(4):2053-2073. DOI: 10.1109/TRO.2022.3141876
    [19]
    LIN Jiarong, ZHANG Fu. LOAM Livox: a fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV[C]. IEEE International Conference on Robotics and Automation, Paris, 2020: 3126- 3131.
    [20]
    GitHub-Livox-SDK/LIO-Livox: a robust LiDAR-inertial odometry for Livox LiDAR[EB/OL]. [2022-12-22]. https://github.com/Livox-SDK/LIO-Livox.
    [21]
    BESL P,MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256. DOI: 10.1109/34.121791
  • Related Articles

    [1]LIU Jing, WEI Zhiqiang, CAI Chunmeng, LIU Yang. Positioning method for roadheaders based on fusion of LiDAR and inertial navigation[J]. Journal of Mine Automation, 2025, 51(3): 78-85, 95. DOI: 10.13272/j.issn.1671-251x.2025010021
    [2]HU Qingsong, LI Jingwen, ZHANG Yuansheng, LI Shiyin, SUN Yanjing. IMU-LiDAR integrated SLAM technology for unmanned driving in mines[J]. Journal of Mine Automation, 2024, 50(10): 21-28. DOI: 10.13272/j.issn.1671-251x.18209
    [3]WEI Dong, LI Zuxu, SI Lei, TAN Chao, WANG Zhongbin, LIANG Bin, XIAO Junpeng. Shape monitoring of scraper conveyor based on inertial measurement unit[J]. Journal of Mine Automation, 2023, 49(8): 37-52, 80. DOI: 10.13272/j.issn.1671-251x.2023010003
    [4]MA Aiqiang, YAO Wanqiang, LIN Xiaohu, ZHANG Liandui, ZHENG Junliang, WU Mouda, YANG Xin. Coal mine roadway environment-oriented LiDAR and IMU fusion positioning and mapping method[J]. Journal of Mine Automation, 2022, 48(12): 49-56. DOI: 10.13272/j.issn.1671-251x.2022070007
    [5]CUI Wen, XUE Qiwen, LI Qingling, WANG Fengdong, HAO Xueer. Unmanned vehicle fusion positioning method based on 3D point cloud map and ESKF[J]. Journal of Mine Automation, 2022, 48(9): 116-122. DOI: 10.13272/j.issn.1671-251x.17997
    [6]REN Huaiwei, LI Shuaishuai, LI Xie, FU Zhuang. Simulation analysis of roof beam position and attitude control of hydraulic support[J]. Journal of Mine Automation, 2019, 45(10): 11-16. DOI: 10.13272/j.issn.1671-251x.17470
    [7]ZHANG Qing, WANG Xuewen, XIE Jiacheng, PANG Xinyu, YANG Zhaojian. Shearer position and attitude adjustment based on strapdown inertial navigation system[J]. Journal of Mine Automation, 2017, 43(10): 83-89. DOI: 10.13272/j.issn.1671-251x.2017.10.017
    [8]JIANG Lei, YANG Liuming, WU Fangda, HAN Huijie, ZHOU Xue. Underground positioning method based on GMapping algorithm and fingerprint map constructio[J]. Journal of Mine Automation, 2017, 43(9): 96-101. DOI: 10.13272/j.issn.1671-251x.2017.09.017
    [9]FU Shichen, LI Yiming, CHENG Long, ZONG Kai, ZHANG Minjun, TAO Yunfei, WU Miao. Affection analysis of geometric layout on position and attitude detection accuracy of roadheader[J]. Journal of Mine Automation, 2017, 43(5): 46-49. DOI: 10.13272/j.issn.1671-251x.2017.05.011
    [10]LI Lu, MA Shao-yi. Construction of Mine-map Graph Correction System Based on MapX[J]. Journal of Mine Automation, 2009, 35(11): 115-116.
  • Cited by

    Periodical cited type(2)

    1. 赵亚东,马腾飞,思旺斗,王猛. 煤矿井下移动机器人同步定位关键技术研究. 煤矿机械. 2024(02): 48-51 .
    2. 蒋水华,余琦,黄河,常志璐,孟京京. 岩质高边坡结构面识别及产状统计信息采集方法. 工矿自动化. 2024(07): 156-164 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (665) PDF downloads (44) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return