Citation: | MA Aiqiang, YAO Wanqiang, LIN Xiaohu, et al. Coal mine roadway environment-oriented LiDAR and IMU fusion positioning and mapping method[J]. Journal of Mine Automation,2022,48(12):49-56. DOI: 10.13272/j.issn.1671-251x.2022070007 |
[1] |
文虎,刘洋,郑学召,等. 矿山救援机器人群设计[J]. 工矿自动化,2019,45(9):34-39. DOI: 10.13272/j.issn.1671-251x.17476
WEN Hu,LIU Yang,ZHENG Xuezhao,et al. Design of mine rescue robot group[J]. Industry and Mine Automation,2019,45(9):34-39. DOI: 10.13272/j.issn.1671-251x.17476
|
[2] |
翟国栋,任聪,王帅,等. 多尺度特征融合的煤矿救援机器人目标检测模型[J]. 工矿自动化,2020,46(11):54-58. DOI: 10.13272/j.issn.1671-251x.2020050033
ZHAI Guodong,REN Cong,WANG Shuai,et al. Object detection model of coal mine rescue robot based on multi-scale feature fusion[J]. Industry and Mine Automation,2020,46(11):54-58. DOI: 10.13272/j.issn.1671-251x.2020050033
|
[3] |
孙金礼,陈杰. 煤矿井下巷道贯通测量精度分析及技术方法[J]. 煤炭科学技术,2010,38(6):112-114,66. DOI: 10.13199/j.cst.2010.06.72.sunjl.025
SUN Jinli,CHEN Jie. Analysis and technical method of linkage survey accruacy for underground mine roadway[J]. Coal Science and Technology,2010,38(6):112-114,66. DOI: 10.13199/j.cst.2010.06.72.sunjl.025
|
[4] |
胡建胜. 煤矿全站仪导线测量误差分析及技术措施研究[J]. 能源技术与管理,2018,43(4):170-172. DOI: 10.3969/j.issn.1672-9943.2018.04.070
HU Jiansheng. Study on error analysis and technical measures of total station traverse measurement in coal mine[J]. Energy Technology and Management,2018,43(4):170-172. DOI: 10.3969/j.issn.1672-9943.2018.04.070
|
[5] |
LI D,YAO Yuan,SHAO Zhenfeng,et al. From digital earth to smart earth[J]. Chinese Science Bulletin,2014,59(8):722-733. DOI: 10.1007/s11434-013-0100-x
|
[6] |
蒋萍. LiDAR/IMU组合导航定位算法研究[D]. 南昌: 南昌大学, 2021.
JIANG Ping. Research on LiDAR/IMU integrated navigation and positioning algorithm[D]. Nanchang: Nanchang University, 2021.
|
[7] |
CHEN Chi,YANG Bisheng,TIAN Mao,et al. Automatic registration of vehicle-borne mobile mapping laser point cloud and sequent panoramas[J]. Acta Geodaetica et Cartographica Sinica,2018,47(2):215.
|
[8] |
陈先中,刘荣杰,张森,等. 煤矿地下毫米波雷达点云成像与环境地图导航研究进展[J]. 煤炭学报,2020,45(6):2182-2192. DOI: 10.13225/j.cnki.jccs.zn20.0316
CHEN Xianzhong,LIU Rongjie,ZHANG Sen,et al. Development of millimeter wave radar imaging and SLAM in underground coal mine environment[J]. Journal of China Coal Society,2020,45(6):2182-2192. DOI: 10.13225/j.cnki.jccs.zn20.0316
|
[9] |
DEBEUNNE C,VIVET D. A review of visual-LiDAR fusion based simultaneous localization and mapping[J]. Sensors(Basel,Switzerland),2020,20(7):2068.
|
[10] |
CADENA C,CARLONE L,CARRILLO H,et al. Past,present,and future of simultaneous localization and mapping:toward the robust-perception age[J]. IEEE Transactions on Robotics,2016,32(6):1309-1332. DOI: 10.1109/TRO.2016.2624754
|
[11] |
种一帆,冀杰,宫铭钱,等. 半直接法与IMU融合的双目视觉里程计[J]. 西南师范大学学报(自然科学版),2021,46(2):112-120.
CHONG Yifan,JI Jie,GONG Mingqian,et al. A stereo visual odometry aided by IMU based on semi-direct method[J]. Journal of Southwest China Normal University(Natural Science Edition),2021,46(2):112-120.
|
[12] |
ZHANG Ji,SINGH S. Low-drift and real-time lidar odometry and mapping[J]. Autonomous Robots,2017,41(2):401-416. DOI: 10.1007/s10514-016-9548-2
|
[13] |
周治国,曹江微,邸顺帆. 3D激光雷达SLAM算法综述[J]. 仪器仪表学报,2021,42(9):13-27. DOI: 10.19650/j.cnki.cjsi.J2107897
ZHOU Zhiguo,CAO Jiangwei,DI Shunfan. Overview of 3D Lidar SLAM algorithms[J]. Chinese Journal of Scientific Instrument,2021,42(9):13-27. DOI: 10.19650/j.cnki.cjsi.J2107897
|
[14] |
SHAN T X, ENGLOT B, MEYERS D, et al. LIO-SAM: tightly-coupled lidar inertial odometry via smoothing and mapping[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), Las Vegas, 2021: 5135-5142.
|
[15] |
HEMANN G, SINGH S, KAESS M. Long-range GPS-denied aerial inertial navigation with LIDAR localization[C]. IEEE/RSJ International Conference on Inetlligent Robots & Systems, Daejeon, 2016: 1659-1666.
|
[16] |
YE Haoyang, CHEN Yuying, LIU Ming, et al. Tightly coupled 3d lidar inertial odometry and mapping[C]. International Conference on Robotics and Automation(ICRA), Montreal, 2019: 3144-3150.
|
[17] |
GENTIL C L,VIDAL-CALLLEJJA T,HUANG Shoudong. IN2LAAMA:inertial lidar localization autocalibration and mapping[J]. IEEE Transactions on Robotics,2021,37(1):275-290. DOI: 10.1109/TRO.2020.3018641
|
[18] |
KULKARNI M, DHARMADHIKARI M, TRANZATTO M, et al. Autonomous teamed exploration of subterranean environments using legged and aerial robots[C]. International Conference on Robotics and Automatioan(ICRA), Philadelphia, 2022: 3306-3313.
|
[19] |
FRANK N, TILMAN K, ROBERT K, et al. Mc2SLAM: real-time inertial lidar odometry using two-scan motion compensation[C]. German Conference on Pattern Recognition, Cham, 2018: 60-72.
|
[20] |
REN Zhuli,WANG Liguan,BI Lin. Robust GICP-based 3D LiDAR SLAM for underground mining environment[J]. Sensors (Basel Switzerland),2019,19(13):2915. DOI: 10.3390/s19132915
|
[21] |
SHAN Tixiao, ENGLOT B. LeGO-LOAM: lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, 2019: 4758-4765.
|
[22] |
ZHAO Yue,ZHANG Jian,FU Chiwing,et al. KD-Box:line-segment-based KD-tree for interactive exploration of large-scale time-series data[J]. IEEE Transactions on Visualization and Computer Graphics,2021,28(1):890-900.
|
1. |
杜锋,张义洋,王凯,周爱桃,吴建松,解北京. 氮气驱替甲烷教学实验设计. 实验室研究与探索. 2025(03): 1-5 .
![]() | |
2. |
徐小马,燕湘湘,黄姝羽. 不同注气成分置驱瓦斯效果数值模拟研究. 工矿自动化. 2024(04): 112-120 .
![]() | |
3. |
李柏,刘鹏,胡彪,龙航,闫冬洁,季鹏飞. 煤层注CO_2驱替抽采瓦斯的数值模拟及敏感性分析. 矿业研究与开发. 2024(12): 169-176 .
![]() | |
4. |
郑学召,曹橙誉. CO_2驱替煤体内部CH_4气体变化模拟研究. 当代化工研究. 2022(19): 1-6 .
![]() | |
5. |
撒占友,吴静波,陆卫东,杨永亮,张鑫,卢守青,刘杰. 注二氧化碳强化煤层气开采研究进展. 煤矿安全. 2022(10): 32-43 .
![]() |