HU Jinghao, GAO Yan, ZHANG Hongjuan, JIN Baoquan. Research on the identification method of non-coal foreign object ofbelt conveyor based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 57-62. DOI: 10.13272/j.issn.1671-251x.2021020041
Citation: HU Jinghao, GAO Yan, ZHANG Hongjuan, JIN Baoquan. Research on the identification method of non-coal foreign object ofbelt conveyor based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 57-62. DOI: 10.13272/j.issn.1671-251x.2021020041

Research on the identification method of non-coal foreign object ofbelt conveyor based on deep learning

More Information
  • In order to solve the problems of single identification target and lack of positioning ability of the existing image identification methods of foreign objects, an identification method of non-coal foreign object of belt conveyor based on deep learning is proposed.This method uses the target detection algorithm YOLOv3 as the basic framework, and uses the Focal Loss function to replace the cross entropy loss function in the original model to improve the YOLOv3 model. By adjusting the optimal hyperparameters (weight parameter α and focus parameter γ) to balance the ratio between samples, the method solves the non-coal foreign object sample imbalance problem. Therefore, the model focuses more on learning complex target sample characteristics during training and improves the model forecast performance. A foreign object dataset is built and the classification performance and speed are tested by the foreign object dataset.The results show that the Focal Loss function performs better than the cross entropy loss function in the foreign object dataset, and the accuracy is increased by 5% when γ=2 and α=075. Therefore, the optimal hyperparameter is γ=2 and α=075.The improved YOLOv3 model's identification accuracy of the three non-coal foreign objects of bolts, angle ironsand nuts increases by about 47%, 35% and 68% respectively, and the recall rate increases by about 66%, 35% and 60% respectively. Under the 2080Ti platform, the predicted type of each image is consistent with the actual type, and the confidence level is above 94%.
  • Related Articles

    [1]LIU Zhigang. Optimization of buffer compartment structure for belt conveyor based on parabolic drawing of focal distance[J]. Journal of Mine Automation, 2024, 50(S2): 180-182.
    [2]ZHANG Lihui. Mask occlusion face recognition algorithm based on neural network model with optimized loss function[J]. Journal of Mine Automation, 2024, 50(S1): 15-20.
    [3]ZHOU Libing, YU Zhengqian, WEI Jianjian, JIANG Xueli, YE Baisong, ZHAO Yexin, YANG Siliang. Research on pedestrian detection technology for mining unmanned vehicles[J]. Journal of Mine Automation, 2024, 50(10): 29-37. DOI: 10.13272/j.issn.1671-251x.2024050058
    [4]LU Xiaoya, LI Haifang. Personnel localization method for low-visibility environments based on improved YOLOv3[J]. Journal of Mine Automation, 2024, 50(9): 130-137. DOI: 10.13272/j.issn.1671-251x.2024070085
    [5]SHEN Ning. Surface foreign object detection of belt conveyor used in coal preparation plant based on binocular vision[J]. Journal of Mine Automation, 2023, 49(S1): 82-85.
    [6]ZHANG Lei, WANG Haosheng, LEI Weiqiang, WANG Bin, LIN Jiangong. Coal gangue target detection of belt conveyor based on YOLOv5s-SDE[J]. Journal of Mine Automation, 2023, 49(4): 106-112. DOI: 10.13272/j.issn.1671-251x.2022080043
    [7]ZHANG Mingzhen. Underground pedestrian detection model based on Dense-YOLO network[J]. Journal of Mine Automation, 2022, 48(3): 86-90. DOI: 10.13272/j.issn.1671-251x.17861
    [8]REN Guoqiang, HAN Hongyong, LI Chengjiang, YIN Yanfang. Foreign object detection in coal mine belt transportation based on Fast_YOLOv3 algorithm[J]. Journal of Mine Automation, 2021, 47(12): 128-133. DOI: 10.13272/j.issn.1671-251x.2021030021
    [9]DU Jingyi, CHEN Rui, HAO Le, SHI Zhimang. Coal mine belt conveyor foreign object detectio[J]. Journal of Mine Automation, 2021, 47(8): 77-83. DOI: 10.13272/j.issn.1671-251x.2021040026
    [10]ZHANG Mengchao, ZHOU Manshan, ZHANG Yuan, YU Yan, LI Hu. Damage detection method for mine conveyor belt based on deep learning[J]. Journal of Mine Automation, 2021, 47(6): 51-56. DOI: 10.13272/j.issn.1671-251x.2021040010
  • Cited by

    Periodical cited type(25)

    1. 柳小波,范立鹏,秦丽杰,王连成,张兴帆. 机器视觉技术在矿山行业的应用现状与展望. 有色金属(矿山部分). 2025(02): 1-15 .
    2. 高敏,李玲,张辉,曹意宏,叶贵州. 复杂环境下煤矿井下胶带运输异物在线检测算法优化与分析. 煤炭工程. 2024(06): 174-180 .
    3. 陈晓杰,王亮,赵美玲,刘光伟,涂俊雄. 基于ECA-YOLOv5s的煤矿带式输送机异物检测网络模型. 采矿技术. 2024(04): 316-324 .
    4. 陈世涛,张敏,栗超. 基于YOLOv5的带式输送机煤堆异物检测. 洁净煤技术. 2024(S2): 12-18 .
    5. 王晓鹏,鲍康润,曹帅. 煤矿带式输送机胶带异物识别技术研究. 现代制造技术与装备. 2024(09): 137-139 .
    6. 李利,梁晶,陈旭东,寇发荣,潘红光. 基于多注意融合网络的输煤皮带异物识别方法. 西安科技大学学报. 2024(05): 976-984 .
    7. 樊红卫,刘金鹏,曹现刚,张超,张旭辉,李曼,马宏伟,毛清华. 低照度尘雾下煤、异物及输送带早期损伤多尺度目标智能检测方法. 煤炭学报. 2024(S2): 1259-1270 .
    8. 王伟,李擎,张德政,栗辉,王昊. 基于深度学习的矿石图像处理研究综述. 工程科学学报. 2023(04): 621-631 .
    9. 王渊,郭卫,张传伟,贺海涛,赵栓峰,路正雄. 融合注意力机制和先验知识的刮板输送机异常煤块检测. 西安科技大学学报. 2023(01): 192-200 .
    10. 佘建煌. 多模式特征增强卷积的带式输送机异物检测模型. 矿山机械. 2023(04): 47-53 .
    11. 蒋社想,周馨蕊. 带式输送机智能巡检系统设计. 煤炭技术. 2023(05): 203-206 .
    12. 旷永龙. 煤矿带式输送机非煤异物检测系统设计与试验. 山西焦煤科技. 2023(08): 28-30+42 .
    13. 毛清华,郭文瑾,翟姣,王荣泉,尚新芒,李世坤,薛旭升. 煤矿带式输送机异常状态视频AI识别技术研究. 工矿自动化. 2023(09): 36-46 . 本站查看
    14. 沈宁. 基于双目视觉的选煤厂用胶带输送机表面异物检测. 工矿自动化. 2023(S1): 82-85 . 本站查看
    15. 唐俊,李敬兆,石晴,杨萍,王瑞. 基于Faster-YOLOv7的带式输送机异物实时检测. 工矿自动化. 2023(11): 46-52+66 . 本站查看
    16. 仇龙. 人工智能技术在煤矿场景的应用探讨. 工程技术研究. 2023(21): 220-222 .
    17. 吴利刚,陈乐,吕媛媛,张喆. 基于轻量化的输送带块煤实时监测方法. 煤炭科学技术. 2023(S2): 285-293 .
    18. 张旭辉,闫建星,张超,万继成,王利欣,胡成军,王力,王东. 基于改进YOLOv5s+DeepSORT的煤块行为异常识别. 工矿自动化. 2022(06): 77-86+117 . 本站查看
    19. 薛旭升,杨星云,齐广浩,马宏伟,毛清华,尚新芒. 煤矿带式输送机分拣机器人异物识别与定位系统设计. 工矿自动化. 2022(12): 33-41 . 本站查看
    20. 毛清华,李世坤,胡鑫,薛旭升,姚丽杰. 基于改进YOLOv7的煤矿带式输送机异物识别. 工矿自动化. 2022(12): 26-32 . 本站查看
    21. 陈亮,杨迪. 改进Centernet的输送带损伤检测. 平顶山学院学报. 2022(05): 20-23+33 .
    22. 杜京义,陈瑞,郝乐,史志芒. 煤矿带式输送机异物检测. 工矿自动化. 2021(08): 77-83 . 本站查看
    23. 周宇杰,徐善永,黄友锐,唐超礼. 基于改进YOLOv4的输送带损伤检测方法. 工矿自动化. 2021(11): 61-65 . 本站查看
    24. 叶鸥,窦晓熠,付燕,邓军. 融合轻量级网络和双重注意力机制的煤块检测方法. 工矿自动化. 2021(12): 75-80 . 本站查看
    25. 陈峰. 矿井多级带式输送机自动运行控制系统的设计应用. 机械管理开发. 2021(12): 287-288 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (166) PDF downloads (48) Cited by(36)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return