Citation: | ZHOU Libing, YU Zhengqian, WEI Jianjian, et al. Research on pedestrian detection technology for mining unmanned vehicles[J]. Journal of Mine Automation,2024,50(10):29-37. doi: 10.13272/j.issn.1671-251x.2024050058 |
[1] |
林燕霞,苏丹. 基于SLAM技术的矿区巷道巡检机器人路径规划优化[J]. 金属矿山,2024(4):209-214.
LIN Yanxia,SU Dan. Path planning optimization of mine roadway inspection robot based on SLAM technique[J]. Metal Mine,2024(4):209-214.
|
[2] |
韩江洪,卫星,陆阳,等. 煤矿井下机车无人驾驶系统关键技术[J]. 煤炭学报,2020,45(6):2104-2115.
HAN Jianghong,WEI Xing,LU Yang,et al. Driverless technology of underground locomotive in coal mine[J]. Journal of China Coal Society,2020,45(6):2104-2115.
|
[3] |
杨伟康,吕文生,杨鹏,等. 基于倒置残差的井下无人车目标检测研究[J]. 矿业研究与开发,2024,44(4):222-227.
YANG Weikang,LYU Wensheng,YANG Peng,et al. Research on target detection of underground unmanned vehicle based on inverted residual[J]. Mining Research and Development,2024,44(4):222-227.
|
[4] |
董观利,宋春林. 基于视频的矿井行人越界检测系统[J]. 工矿自动化,2017,43(2):29-34.
DONG Guanli,SONG Chunlin. Underground pedestrian crossing detection system based on video[J]. Industry and Mine Automation,2017,43(2):29-34.
|
[5] |
刘备战,赵洪辉,周李兵. 面向无人驾驶的井下行人检测方法[J]. 工矿自动化,2021,47(9):113-117.
LIU Beizhan,ZHAO Honghui,ZHOU Libing. Unmanned driving-oriented underground mine pedestrian detection method[J]. Industry and Mine Automation,2021,47(9):113-117.
|
[6] |
李伟山,卫晨,王琳. 改进的Faster RCNN煤矿井下行人检测算法[J]. 计算机工程与应用,2019,55(4):200-207.
LI Weishan,WEI Chen,WANG Lin. Improved Faster RCNN approach for pedestrian detection in underground coal mine[J]. Computer Engineering and Applications,2019,55(4):200-207.
|
[7] |
罗坤鑫. 矿用车辆多信息融合行人检测技术研究[D]. 西安:西安科技大学,2021.
LUO Kunxin. Research on pedestrian detection technology of multi-information fusion for mining vehicles[D]. Xi'an:Xi'an University of Science and Technology,2021.
|
[8] |
张应团,李涛,郑嘉祺. 基于DCNN的井下行人监测方法研究[J]. 计算机与数字工程,2019,47(8):2027-2032. doi: 10.3969/j.issn.1672-9722.2019.08.039
ZHANG Yingtuan,LI Tao,ZHENG Jiaqi. Research of underground pedestrian monitoring method based on DCNN[J]. Computer & Digital Engineering,2019,47(8):2027-2032. doi: 10.3969/j.issn.1672-9722.2019.08.039
|
[9] |
谭显静. 图像去噪的ROF模型的理论分析与算法研究[D]. 重庆:重庆大学,2019.
TAN Xianjing. Theoretical analysis and algorithm of ROF model for image denoising[D]. Chongqing:Chongqing University,2019.
|
[10] |
刘寿鑫,龙伟,李炎炎,等. 基于HSV色彩空间的低照度图像增强[J]. 计算机工程与设计,2021,42(9):2552-2560.
LIU Shouxin,LONG Wei,LI Yanyan,et al. Low-light image enhancement based on HSV color space[J]. Computer Engineering and Design,2021,42(9):2552-2560.
|
[11] |
余化鹏,李舟,杨新瑞,等. 基于目标检测结果的轮廓及颜色识别研究[J]. 成都大学学报(自然科学版),2019,38(3):276-280. doi: 10.3969/j.issn.1004-5422.2019.03.011
YU Huapeng,LI Zhou,YANG Xinrui,et al. Research on object contours extraction and color recognition based on object detection result[J]. Journal of Chengdu University (Natural Science Edition),2019,38(3):276-280. doi: 10.3969/j.issn.1004-5422.2019.03.011
|
[12] |
董红召,赵龙钢,赵晨馨,等. OBD支持下公交车到达时间的回归预测方法[J]. 高技术通讯,2021,31(4):425-434. doi: 10.3772/j.issn.1002-0470.2021.04.010
DONG Hongzhao,ZHAO Longgang,ZHAO Chenxin,et al. Regression prediction method of bus arrival time supported by OBD[J]. Chinese High Technology Letters,2021,31(4):425-434. doi: 10.3772/j.issn.1002-0470.2021.04.010
|
[13] |
RUDIN L I,OSHER S,FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena,1992,60(1/2/3/4):259-268.
|
[14] |
WEI Chen,WANG Wenjing,YANG Wenhan,et al. Deep Retinex decomposition for low-light enhancement[EB/OL]. (2022-08-21)[2024-04-22]. https://arxiv.org/abs/1808.04560v1.
|
[15] |
WANG Yufei,WAN Renjie,YANG Wenhan,et al. Low-light image enhancement with normalizing flow[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2022,36(3):2604-2612. doi: 10.1609/aaai.v36i3.20162
|
[16] |
WANG Zhou,BOVIK A C,SHEIKH H R,et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing,2004,13(4):600-612. doi: 10.1109/TIP.2003.819861
|
[17] |
舒军,蒋明威,杨莉,等. DenseNet模型轻量化改进研究[J]. 华中师范大学学报(自然科学版),2020,54(2):187-193.
SHU Jun,JIANG Mingwei,YANG Li,et al. Lightweight improvement research of DenseNet model[J]. Journal of Central China Normal University(Natural Sciences),2020,54(2):187-193.
|
[18] |
LI Hulin,LI Jun,WEI Hanbing,et al. Slim-neck by GSConv:a lightweight-design for real-time detector architectures[J]. Journal of Real-Time Image Processing,2024,21(3). DOI: 10.1007/s11554-024-01436-6.
|
[19] |
WOO S,PARK J,LEE J Y,et al. CBAM:convolutional block attention module[M]. Cham:Springer International Publishing,2018:3-19.
|
[20] |
吴永俊,汪泓,杨晨. 基于改进DeepLabV3+的石漠化地区裸岩信息提取[J]. 航天返回与遥感,2024,45(1):123-135.
WU Yongjun,WANG Hong,YANG Chen. Extraction of bare rock information in rocky desertification area based on improved DeepLabV3+[J]. Spacecraft Recovery & Remote Sensing,2024,45(1):123-135.
|
[21] |
吕璐璐,陈树越,王利平,等. 深度特征融合与重构的微纤维识别算法[J]. 现代电子技术,2022,45(1):83-88.
LYU Lulu,CHEN Shuyue,WANG Liping,et al. Microfiber recognition algorithm based on deep feature fusion and reconstruction[J]. Modern Electronics Technique,2022,45(1):83-88.
|
[22] |
樊嵘,马小陆. 面向带钢表面小目标缺陷检测的改进YOLOv7算法[J]. 合肥工业大学学报(自然科学版),2024,47(3):303-308,316.
FAN Rong,MA Xiaolu. Improved YOLOv7 algorithm for small target defect detection on strip steel surface[J]. Journal of Hefei University of Technology(Natural Science),2024,47(3):303-308,316.
|
[23] |
韩崇,樊卫北,郭澳. 基于特征融合的毫米波雷达行为识别算法[J/OL]. 计算机科学:1-10[2024-03-12]. http://kns.cnki.net/kcms/detail/50.1075.TP.20240513.1347.011.html.
HAN Chong,FAN Weibei,GUO Ao. Millimeter wave radar human activity recognition algorithm based on feature fusion [J/OL]. Computer Science:1-10[2024-03-12]. http://kns.cnki.net/kcms/detail/50.1075.TP.20240513.1347.011.html.
|
[24] |
彭垚潘,张荣芬,刘宇红,等. 融入特征交互与注意力的轻量化混凝土裂缝分割算法[J/OL]. 光电子·激光:1-11[2024-03-12]. http://kns.cnki.net/kcms/detail/12.1182.O4.20240428.1852.016.html.
PENG Yaopan,ZHANG Rongfen,LIU Yuhong,et al. Lightweight concrete crack segmentation algorithm integrating feature interaction and attention[J/OL]. Journal of Optoelectronics·Laser:1-11[2024-03-12]. http://kns.cnki.net/kcms/detail/12.1182.O4.20240428.1852.016.html.
|
[25] |
韩康,战洪飞,余军合,等. 基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断[J]. 浙江大学学报(工学版),2024,58(6):1285-1295.
HAN Kang,ZHAN Hongfei,YU Junhe,et al. Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion[J]. Journal of Zhejiang University(Engineering Science),2024,58(6):1285-1295.
|
[26] |
韩康,李敬兆,陶荣颖. 基于改进YOLOv7和ByteTrack的煤矿关键岗位人员不安全行为识别[J]. 工矿自动化,2024,50(3):82-91.
HAN Kang,LI Jingzhao,TAO Rongying. Recognition of unsafe behaviors of key position personnel in coal mines based on improved YOLOv7 and ByteTrack[J]. Journal of Mine Automation,2024,50(3):82-91.
|