Citation: | REN Guoqiang, HAN Hongyong, LI Chengjiang, et al. Foreign object detection in coal mine belt transportation based on Fast_YOLOv3 algorithm[J]. Industry and Mine Automation, 2021, 47(12): 128-133. doi: 10.13272/j.issn.1671-251x.2021030021 |
[1] |
郜振国.煤矿井下运输异物检测关键技术研究[D].徐州:中国矿业大学,2018.
GAO Zhenguo.Study on key technologies of foreign object detection in the coal mine transportation[D].Xuzhou:China University of Mining and Technology,2018.
|
[2] |
姚富光.智能高速在线异物识别分拣关键技术研究[D].重庆:重庆大学,2009. YAO Fuguang.Key technologies research on intelligent high-speed on-line foreign material recognition and sorting[D].Chongqing:Chongqing University,2009.
|
[3] |
吕志强.复杂环境下煤矿皮带运输异物图像识别研究[D].徐州:中国矿业大学,2020.
LYU Zhiqiang.Research on image recognition of foreign bodies in the process of coal mine belt transportation in complex environment[D].Xuzhou:China University of Mining and Technology,2020.
|
[4] |
GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition,Columbus,2014:580-587.
|
[5] |
REN Shaoqing,HE Kaiming,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
|
[6] |
REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2015:779-788.
|
[7] |
REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:7263-7271.
|
[8] |
REDMON J,FARHADI A.YOLOv3:an incremental improvement[C]//IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake,2018:1804-1808.
|
[9] |
马巧梅,王明俊,梁昊然.复杂场景下基于改进YOLOv3的车牌定位检测算法[J].计算机工程与应用,2021,57(7):198-208.
MA Qiaomei,WANG Mingjun,LIANG Haoran.License plate location detection algorithm based on improved YOLOv3 in complex scenes[J].Computer Engineering and Applications,2021,57(7):198-208.
|
[10] |
卢官有,顾正弘.改进的YOLOv3安检包裹中危险品检测算法[J].计算机应用与软件,2021,38(1):197-204.
LU Guanyou,GU Zhenghong.A dangerous goods detection algorithm based on improved YOLOv3[J].Computer Applications and Software,2021,38(1):197-204.
|
[11] |
阮祥伟,李华,余烨.基于改进YOLOv3的快速车标检测方法[J].合肥工业大学学报(自然科学版),2020,43(12):1608-1613.
RUAN Xiangwei,LI Hua,YU Ye.A fast vehicle logo detection method based on improved YOLOv3[J].Journal of Hefei University of Technology(Natural Science),2020,43(12):1608-1613.
|
[12] |
许腾,唐贵进,刘清萍,等.基于空洞卷积和Focal Loss的改进YOLOv3算法[J].南京邮电大学学报(自然科学版),2020,40(6):100-108.
XU Teng,TANG Guijin,LIU Qingping,et al.Improved YOLOv3 based on dilated convolution and Focal Loss[J].Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition),2020,40(6):100-108.
|
[13] |
徐志强,吕子奇,王卫东,等.煤矸智能分选的机器视觉识别方法与优化[J].煤炭学报,2020,45(6):2207-2216.
XU Zhiqiang,LYU Ziqi,WANG Weidong,et al.Machine vision recognition method and optimization for intelligent separation of coal and gangue[J].Journal of China Coal Society,2020,45(6):2207-2216.
|
[14] |
吴守鹏.基于机器视觉的运煤皮带异物识别方法研究[D].徐州:中国矿业大学,2019.
WU Shoupeng.Research on detection method of foreign object on coal conveyor belt based on computer vision[D].Xuzhou:China University of Mining and Technology,2019.
|