特厚煤层综放开采底板变形破坏深度研究

侯俊华

侯俊华. 特厚煤层综放开采底板变形破坏深度研究[J]. 工矿自动化,2022,48(8):56-61, 121. DOI: 10.13272/j.issn.1671-251x.2022050021
引用本文: 侯俊华. 特厚煤层综放开采底板变形破坏深度研究[J]. 工矿自动化,2022,48(8):56-61, 121. DOI: 10.13272/j.issn.1671-251x.2022050021
HOU Junhua. Research on the deformation and failure depth of the floor in fully mechanized top coal caving of extra-thick seam[J]. Journal of Mine Automation,2022,48(8):56-61, 121. DOI: 10.13272/j.issn.1671-251x.2022050021
Citation: HOU Junhua. Research on the deformation and failure depth of the floor in fully mechanized top coal caving of extra-thick seam[J]. Journal of Mine Automation,2022,48(8):56-61, 121. DOI: 10.13272/j.issn.1671-251x.2022050021

特厚煤层综放开采底板变形破坏深度研究

基金项目: 国家自然科学基金项目(41741020)。
详细信息
    作者简介:

    侯俊华(1983—),男,河南西华人,高级工程师,硕士,现主要从事煤矿安全管理和水害防治方面的工作,E-mail:houjunhua168168@163.com

  • 中图分类号: TD323

Research on the deformation and failure depth of the floor in fully mechanized top coal caving of extra-thick seam

  • 摘要: 为探究特厚煤层综放开采条件下底板变形破坏深度,以兖矿能源集团股份有限公司东滩煤矿1305工作面为背景,采用现场实测、数值模拟和理论计算等方法综合分析了该工作面采动煤层底板变形破坏深度。采用应变感应法和钻孔成像技术的现场实测结果表明:底板受采动矿压作用在水平和垂直方向上存在明显的显现特征,水平方向上超前测点50 m附近、底板浅部10 m深度位置开始受采动矿压影响,工作面推过一定距离之后底板变形破坏剧烈;底板不同深度水平方向上超前距和滞后距变化范围分别为96~115 m和48~52 m,工作面综放开采底板变形破坏深度为16~20 m,垂深20 m以下底板岩层以弹性变形为主。数值模拟的底板不同深度塑性区分布特征表明,随着距工作面底板距离越远,受采动矿压影响越小,塑性区范围越小,底板下20 m基本没发生破坏。理论计算结果确定了底板变形破坏深度为19.2 m。综合现场实测、数值模拟和理论计算结果,可知1305工作面综放开采底板变形破坏深度不超过20 m。研究结果可为矿井特厚煤层综放开采底板水害防治提供量化依据。
    Abstract: In order to explore the deformation and failure depth of the floor under the condition of fully mechanized top coal caving of extra-thick coal seam, this paper takes 1305 working face of Dongtan Coal Mine of Yankuang Energy Group Co., Ltd. as the background. The deformation and failure depth of the floor in the mining coal seam of the working face is comprehensively analyzed by using field measurement, numerical simulation and theoretical calculation. The field measurement results using the strain induction method and borehole imaging technology show the following results. The floor is affected by mining ground pressure, and there are obvious characteristics in horizontal and vertical directions. In the horizontal direction, the position near the advanced support measuring point of 50 m and at the depth of 10 m in the shallow part of the floor starts to be affected by the mining ground pressure. After the working face is pushed over a certain distance, the deformation and failure of the floor are severe. The variation range of crossover distance and lag distance in the horizontal direction of different depths of the floor is 96-115 m and 48-52 m respectively. The deformation and failure depth of the floor in fully mechanized top coal caving of the working face is 16-20 m. The floor rock below the vertical depth of 20 m is mainly elastic deformation. The distribution characteristics of the plastic zone in different depths of the floor by numerical simulation show that the farther the distance from the working face floor is, the smaller the influence of mining pressure is, and the smaller the range of the plastic zone is. The 20 m under the floor is basically not damaged. The result of the theoretical calculation confirms that the deformation and failure depth of the floor is 19.2 m. Based on the results of field measurement, numerical simulation and theoretical calculation, the deformation and failure depth of the floor in 1305 working face is less than 20 m. The research results can provide the quantitative basis for the prevention and control of floor water disasters in fully mechanized top coal caving of extra-thick coal seams.
  • 图  1   1305工作面顶底板地层柱状图

    Figure  1.   Strata column of 1305 working face roof and floor

    图  2   测试钻孔布置平面

    Figure  2.   Plane of test boreholes layout

    图  3   测试钻孔剖面

    Figure  3.   Profile of test boreholes

    图  4   1号测试钻孔各测点应变增量随工作面推进距离变化曲线

    Figure  4.   Strain increment curves of measuring points in No.1 test borehole during working face advance

    图  5   工作面推进不同距离时底板下垂深10 m处2号测试钻孔孔壁图像

    Figure  5.   Images of No.2 test borehole wall at 10 m vertical depth of floor with different working face advance distances

    图  6   工作面顶底板工程地质模型纵剖面

    Figure  6.   Profile of engineering geological model for working face roof and floor

    图  7   3号煤层开采完毕后塑性区分布

    Figure  7.   Distribution of plastic zone after No.3 coal seam mining

    表  1   测试钻孔主要参数

    Table  1   Main parameters of test boreholes

    参数1号测试钻孔2号测试钻孔
    开孔直径/mm12791
    开孔深度/m2.0
    孔口管直径/mm110
    孔口管长度/m2.0
    终孔直径/mm9191
    钻孔方位角/(°)3142
    钻孔倾角/(°)40(俯角)70(仰角)
    钻孔与巷道夹角/(°)9080
    煤岩层真倾角/(°)5.66.0
    钻孔与煤岩层走向线夹角/(°)8187
    煤岩层视倾角/(°)5.56.0
    钻孔总深度/m3010
    控制3号煤层底板最大真厚度/m2911
    下载: 导出CSV

    表  2   工作面采动底板变形感应距

    Table  2   Deformation induction distances of mining floor of working face

    测点垂深/m超前距/m滞后距/m感应范围/m
    16115
    2011049159
    2410248150
    299652148
    下载: 导出CSV

    表  3   工作面顶底板岩层物理力学参数

    Table  3   Physical and mechanical parameters of working face roof and floor strata

    岩层密度/
    (kg·m−3
    体积模量/
    GPa
    剪切模量/
    GPa
    黏聚力/
    MPa
    内摩擦角/
    (°)
    抗拉强度/
    MPa
    中细砂岩2 6502.901.749.5414.2
    泥质岩2 5502.611.357.6303.0
    粗砂岩2 6903.352.3010.7454.9
    3号煤层1 4002.080.541.2200.6
    粉砂岩2 6002.911.507.8323.6
    石灰岩2 8005.574.5311.4486.7
    下载: 导出CSV
  • [1] 国家煤矿安全监察局. 煤矿防治水细则[M]. 北京: 煤炭工业出版社, 2018.

    State Administration of Coal Mine Safety. Rules for water prevention and control in coal mines[M]. Beijing: China Coal Industry Publishing House, 2018.

    [2] 尹尚先,连会青,徐斌,等. 深部带压开采:传承与创新[J]. 煤田地质与勘探,2021,49(1):170-181. DOI: 10.3969/j.issn.1001-1986.2021.01.018

    YIN Shangxian,LIAN Huiqing,XU Bin,et al. Deep mining under safe water pressure of aquifer:inheritance and innovation[J]. Coal Geology & Exploration,2021,49(1):170-181. DOI: 10.3969/j.issn.1001-1986.2021.01.018

    [3] 刘杰. 特厚煤层综放工作面围岩运动的微地震监测[J]. 矿业安全与环保,2008,35(1):44-46. DOI: 10.3969/j.issn.1008-4495.2008.01.016

    LIU Jie. Microseismic monitoring of surrounding rock movement in fully mechanized caving face of extra thick coal seam[J]. Minging Safety & Environmental Protection,2008,35(1):44-46. DOI: 10.3969/j.issn.1008-4495.2008.01.016

    [4] 朱术云,曹丁涛,岳尊彩,等. 特厚煤层综放采动底板变形破坏规律的综合实测[J]. 岩土工程学报,2012,34(10):1931-1938.

    ZHU Shuyun,CAO Dingtao,YUE Zuncai,et al. Comprehensive measurement of characteristics of deformation and failure of extra-thick coal seam floor induced by fully mechanized top-coal mining[J]. Chinese Journal of Geotechnical Engineering,2012,34(10):1931-1938.

    [5] 王一栋,姜振泉,朱术云,等. 特厚煤层采动底板变形破坏的数值模拟与实测对比[J]. 煤矿安全,2012,43(10):35-37. DOI: 10.13347/j.cnki.mkaq.2012.10.015

    WANG Yidong,JIANG Zhenquan,ZHU Shuyun,et al. Contrast of numerical simulation and field measurement on deformation and failure in thick seam mining floor[J]. Safety in Coal Mines,2012,43(10):35-37. DOI: 10.13347/j.cnki.mkaq.2012.10.015

    [6] 李进军,李怀宾,顾合龙. 厚煤层承压水上开采底板破坏规律数值模拟研究[J]. 煤炭技术,2015,34(2):109-111.

    LI Jinjun,LI Huaibin,GU Helong. Numerical simulation research on damage of thick coal seam mining above confined water on floor[J]. Coal Technology,2015,34(2):109-111.

    [7] 杨本水,黄天缘,宣以琼,等. 特厚煤层综放开采底板破坏及阻隔水性能分析[J]. 安徽建筑大学学报,2019,27(3):28-33.

    YANG Benshui,HUANG Tianyuan,XUAN Yiqiong,et al. Bottom destruction and barrier performance analysis of fully mechanized caving mining in extra-thick coal seam[J]. Journal of Anhui Jianzhu University,2019,27(3):28-33.

    [8] 范红伟,杨涛. 近距离特厚煤层采动影响下底板破坏及巷道稳定性研究[J]. 矿业研究与开发,2021,41(5):107-112.

    FAN Hongwei,YANG Tao. Research on floor failure and roadway stability under the influence of mining in near-distance extra-thick coal seam[J]. Mining Research and Development,2021,41(5):107-112.

    [9] 张郑伟. 特厚煤层综放开采对底板变形损伤的影响研究[J]. 同煤科技,2021(3):7-10.

    ZHANG Zhengwei. Study on influence of fully mechanized top coal caving mining on deformation and damage of floor in extra thick coal seam[J]. Datong Coal Science & Technology,2021(3):7-10.

    [10] 陈洋. 大同矿区特厚煤层采动底板变形及破坏深度研究[D]. 徐州: 中国矿业大学, 2021.

    CHEN Yang. Study on deformation and failure depth of mining-induced floor of extra-thick coal seam in Datong Mining Area[D]. Xuzhou: China University of Mining and Technology, 2021.

    [11] 高银贵,孔皖军,陈永春,等. 特厚煤层综放开采下工作面底板岩层破坏特征[J]. 能源环境保护,2021,35(6):68-75. DOI: 10.3969/j.issn.1006-8759.2021.06.010

    GAO Yingui,KONG Wanjun,CHEN Yongchun,et al. Study on the failure characteristics of the bottom slate layer in the working face of fully mechanized caving in ultra-thick coal seam[J]. Energy Environmental Protection,2021,35(6):68-75. DOI: 10.3969/j.issn.1006-8759.2021.06.010

    [12] 王升阳,张志巍. 厚煤层综放开采底板采动破坏及渗流特征[J]. 能源与节能,2022(4):10-14. DOI: 10.3969/j.issn.2095-0802.2022.04.003

    WANG Shengyang,ZHANG Zhiwei. Mining failure and seepage characteristics of fully mechanized caving floor in thick coal seams[J]. Energy and Energy Conservation,2022(4):10-14. DOI: 10.3969/j.issn.2095-0802.2022.04.003

    [13] 郭国强. 综放开采特厚煤层采场底板破坏规律研究[J]. 煤田地质与勘探,2022,50(8):53-61. DOI: 10.12363/issn.1001-1986.21.12.0774

    GUO Guoqiang. Floor failure law of extra-thick coal seam in fully mechanized caving mining[J]. Coal Geology & Exploration,2022,50(8):53-61. DOI: 10.12363/issn.1001-1986.21.12.0774

    [14] 于小鸽, 施龙青, 韩进, 等. 损伤底板破坏深度预测理论及应用[M]. 北京: 煤炭工业出版社, 2016.

    YU Xiaoge, SHI Longqing, HAN Jin, et al. Theory and application of failure depth prediction of damaged floor[M]. Beijing: China Coal Industry Publishing House, 2016.

    [15] 钱鸣高, 石平五. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2003.

    QIAN Minggao, SHI Pingwu. Mine pressure and rock control[M]. Xuzhou: China University of Mining and Technology Press, 2003.

  • 期刊类型引用(12)

    1. 赵亚东,马腾飞,思旺斗,王猛. 煤矿井下移动机器人同步定位关键技术研究. 煤矿机械. 2024(02): 48-51 . 百度学术
    2. 司垒,王忠宾,魏东,顾进恒,闫海峰,谭超,朱远胜. 基于IMU-LiDAR紧耦合的煤矿防冲钻孔机器人定位导航方法. 煤炭学报. 2024(04): 2179-2194 . 百度学术
    3. 高毅楠,姚顽强,蔺小虎,郑俊良,马柏林,冯玮,高康洲. 煤矿井下多重约束的视觉SLAM关键帧选取方法. 煤炭学报. 2024(S1): 472-482 . 百度学术
    4. 刘敬东,李旭,于凤启,苟丙荣,贺国庆,巩泽文. 激光SLAM技术在巷道精细建模的应用研究. 煤矿机械. 2024(10): 199-202 . 百度学术
    5. 黄晨烜,常健,王雷. 基于激光雷达的井下带式输送机边缘提取方法. 工矿自动化. 2024(09): 115-123 . 本站查看
    6. 胡青松,李敬雯,张元生,李世银,孙彦景. 面向矿井无人驾驶的IMU与激光雷达融合SLAM技术. 工矿自动化. 2024(10): 21-28 . 本站查看
    7. 崔邵云,鲍久圣,胡德平,袁晓明,张可琨,阴妍,王茂森,朱晨钟. SLAM技术及其在矿山无人驾驶领域的研究现状与发展趋势. 工矿自动化. 2024(10): 38-52 . 本站查看
    8. 马亮,高亮,廉博翔,张琦,蔺小虎,姜之跃. 基于已知点约束的高精度煤矿巷道三维点云建模方法. 工矿自动化. 2024(11): 78-83+151 . 本站查看
    9. 夏建超,周亮亮,陈仁. 恶劣环境下钢包脱挂钩状态自动识别技术研究. 重型机械. 2023(04): 62-67 . 百度学术
    10. 高海跃,王凯,王保兵,王丹丹. 基于全局点云地图的煤矿井下无人机定位方法. 工矿自动化. 2023(08): 81-87+133 . 本站查看
    11. 程健,李昊,马昆,刘斌,孙大智,马永壮,殷罡,王广福,李和平. 矿井视觉计算体系架构与关键技术. 煤炭科学技术. 2023(09): 202-218 . 百度学术
    12. 李少安,刘欣,郭长鑫,王博,丁浩然,李晓健. 基于激光雷达自主定位导航的多功能机器人. 无线互联科技. 2023(17): 54-57 . 百度学术

    其他类型引用(6)

图(7)  /  表(3)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  64
  • PDF下载量:  29
  • 被引次数: 18
出版历程
  • 收稿日期:  2022-05-06
  • 修回日期:  2022-08-08
  • 网络出版日期:  2022-06-26
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回