固体充填液压支架全位姿测量及虚拟仿真

王裕, 史艳楠, 王毅颖, 齐朋磊, 王翰秋

王裕,史艳楠,王毅颖,等. 固体充填液压支架全位姿测量及虚拟仿真[J]. 工矿自动化,2022,48(7):81-89. DOI: 10.13272/j.issn.1671-251x.2022030078
引用本文: 王裕,史艳楠,王毅颖,等. 固体充填液压支架全位姿测量及虚拟仿真[J]. 工矿自动化,2022,48(7):81-89. DOI: 10.13272/j.issn.1671-251x.2022030078
WANG Yu, SHI Yannan, WANG Yiying, et al. Full pose measurement and virtual simulation of solid filling hydraulic support[J]. Journal of Mine Automation,2022,48(7):81-89. DOI: 10.13272/j.issn.1671-251x.2022030078
Citation: WANG Yu, SHI Yannan, WANG Yiying, et al. Full pose measurement and virtual simulation of solid filling hydraulic support[J]. Journal of Mine Automation,2022,48(7):81-89. DOI: 10.13272/j.issn.1671-251x.2022030078

固体充填液压支架全位姿测量及虚拟仿真

基金项目: 河北省自然科学基金资助项目(E2020402064);河北省创新能力提升计划项目(215676140H);邯郸市科学技术研究与发展计划项目(20312904002)。
详细信息
    作者简介:

    王裕(1997—),男,江苏泰州人,硕士研究生,研究方向为煤矿充填设备虚拟仿真,E-mail:913714687@qq.com

    通讯作者:

    史艳楠(1988—),男,河南焦作人,讲师,博士,硕士研究生导师,主要从事煤炭生态保护开采研究工作,E-mail:shiynchn@163.com

  • 中图分类号: TD355

Full pose measurement and virtual simulation of solid filling hydraulic support

  • 摘要: 针对固体充填液压支架处于复杂地质条件下时空间位姿状态动态变化难以直接识别,现有位姿测量系统存在位姿参数部分缺失的问题,设计了一种固体充填液压支架全位姿测量系统。利用3D Max建模软件建立了固体充填液压支架三维模型,基于固体充填液压支架不同的特征节点,采用多传感器融合测量方法获取反映其空间全位姿的9个参数,即支架底座倾斜角(与水平面夹角)、顶梁姿态角(与水平面夹角)、支架高度、推矸推移距离、护帮板状态、推压密实机构倾角(与后顶梁夹角)、推压密实机构推移距离、支架组护帮板之间的距离、刮板输送机中部槽与支架推矸的夹角。将倾角传感器布置于前顶梁、后顶梁、底座、推压密实机构千斤顶等处,用于测量支架的底座倾斜角和前后顶梁姿态角等,将位移传感器安装在支架的推矸和推压密实机构上,用于测量推移距离等。利用视觉传感器采集图像数据,通过建立单目视觉测量模型及全局坐标系与局部坐标系的转换,分析计算固体充填液压支架组护帮板之间的距离、支架推矸与刮板输送机中部槽之间的角度、护帮板状态和支架高度等。针对现有固体充填液压支架虚拟仿真系统在数据分析、运动关系约束等方面缺乏深入研究的问题,设计了基于 Unity3D 的固体充填液压支架虚拟仿真系统,该系统利用Unity3D实现了支架运动仿真,可实时反映支架运行时的位姿状态变化。基于 Unity3D 的固体充填液压支架虚拟仿真系统与固体充填液压支架全位姿测量系统配套使用,可真实反映固体充填液压支架的运行状态,保证固体充填液压支架仿真的稳定性及数据的可靠性,为固体充填液压支架平稳运行提供了技术支持。
    Abstract: The dynamic change of the solid filling hydraulic support's spatial pose state is difficult to directly identify under complex geological conditions. The existing pose measurement system has some missing pose parameters. In order to solve the above problems, a full pose measurement system of the solid filling hydraulic support is designed. The 3D model of the solid filling hydraulic support is established by using 3D Max modeling software. Based on different characteristic nodes of the solid filling hydraulic support, nine parameters reflecting the full spatial pose are obtained by using the multi-sensor fusion measurement method. The nine parameters include the inclination angle of the support base (included angle with the horizontal plane), the attitude angle of the top beam (included angle with the horizontal plane), the support height, the pushing distance, the status of the guard plate, the inclination angle of the pushing and compacting mechanism (included angle with the rear top beam), the pushing distance of the pushing and compacting mechanism, the distance between the guard plates of the support group, and the included angle between scraper conveyor central groove and support pushing gear. The inclination angle sensors are arranged at the front top beam, the rear top beam, the base, and the jack of pushing and compacting mechanism. They are used for measuring the inclination angle of the base of the support, the attitude angles of the front top beam and the rear top beam. The displacement sensors are arranged on the pushing gear and pushing and compacting mechanism of the support. The sensors are used for measuring the pushing distance. The vision sensors are used for collecting image data. The monocular vision measurement model is established. The converting of a global coordinate system into a local coordinate system is obtained. Therefore, the distance between the guard plates of the solid filling hydraulic support set, the angle between the support pushing gear and the center groove of the scrap conveyor, the state of the guard plates and the support height can be analyzed and calculated. The existing virtual simulation system of solid filling hydraulic support lacks in-depth research in data analysis, motion relationship constraints and other aspects. In order to solve these problems, a virtual simulation system of solid filling hydraulic support based on Unity3D is designed. The system realizes the motion simulation of the support by using Unity3D. The system reflects the change of the pose state of the running support in real time. The virtual simulation system of solid filling hydraulic support based on Unity3D is used together with the full pose measurement system of solid filling hydraulic support, which can truly reflect the running state of solid filling hydraulic support, and ensure the stability and the reliability of data of solid filling hydraulic support simulation. The systems can provide technical support for the smooth running of solid filling hydraulic support.
  • 图  1   固体充填液压支架三维模型

    Figure  1.   Solid filling hydraulic support 3D model

    图  2   固体充填液压支架全位姿测量系统架构

    Figure  2.   Full pose measurement system architecture ofsolid filling hydraulic support

    图  3   固体充填液压支架全位姿参数

    Figure  3.   Full pose measurement parameters of solid filling hydraulic support

    图  4   全位姿测量传感器布置方案

    Figure  4.   Sensor layout scheme of full pose measurement

    图  5   单目视觉测量模型

    Figure  5.   Monocular vision measurement model

    图  6   固体充填液压支架姿态视觉测量模型

    Figure  6.   Visual measurement model of solid filling hydraulic support's posture

    图  7   顶梁与摄像机空间几何关系

    Figure  7.   Space geometry relationship between roof beam and camera

    图  8   固体充填液压支架虚拟仿真系统架构

    Figure  8.   Architecture of virtual simulation system of solid filling hydraulic support

    图  9   仿真场景

    Figure  9.   Simulation scene

    图  10   推实机构伸缩运动

    Figure  10.   Telescopic movement of the pushing and compacting mechanism

    图  11   护帮板旋转运动

    Figure  11.   Rotation of guard plate

    图  12   状态显示界面

    Figure  12.   Status display interface

  • [1] 任怀伟,赵国瑞,周杰,等. 智能开采装备全位姿测量及虚拟仿真控制技术[J]. 煤炭学报,2020,45(3):956-971. DOI: 10.13225/j.cnki.jccs.SJ20.0335

    REN Huaiwei,ZHAO Guorui,ZHOU Jie,et al. Key technologies of all position and orientation monitoring and virtual simulation and control for smart mining equipment[J]. Journal of China Coal Society,2020,45(3):956-971. DOI: 10.13225/j.cnki.jccs.SJ20.0335

    [2] 李帅帅,任怀伟. 综采工作面“三机”设备位姿测量技术研究现状与展望[J]. 煤炭科学技术,2020,48(9):218-226. DOI: 10.13199/j.cnki.cst.2020.09.028

    LI Shuaishuai,REN Huaiwei. Research status and development trend of position and posture measurement technology on hydraulic support,scraper conveyor,shearer in fully-mechanized mining face[J]. Coal Science and Technology,2020,48(9):218-226. DOI: 10.13199/j.cnki.cst.2020.09.028

    [3] 张旭辉,王冬曼,杨文娟. 基于视觉测量的液压支架位姿检测方法[J]. 工矿自动化,2019,45(3):56-60. DOI: 10.13272/j.issn.1671-251x.2018090039

    ZHANG Xuhui,WANG Dongman,YANG Wenjuan. Position detection method of hydraulic support based on vision measurement[J]. Industry and Mine Automation,2019,45(3):56-60. DOI: 10.13272/j.issn.1671-251x.2018090039

    [4] 张坤,廉自生. 液压支架姿态角度测量系统[J]. 工矿自动化,2017,43(5):40-45. DOI: 10.13272/j.issn.1671-251x.2017.05.010

    ZHANG Kun,LIAN Zisheng. Attitude angle measuring system of hydraulic support[J]. Industry and Mine Automation,2017,43(5):40-45. DOI: 10.13272/j.issn.1671-251x.2017.05.010

    [5] 张坤,廉自生,谢嘉成,等. 基于多传感器数据融合的液压支架高度测量方法[J]. 工矿自动化,2017,43(9):65-69. DOI: 10.13272/j.issn.1671-251x.2017.09.012

    ZHANG Kun,LIAN Zisheng,XIE Jiacheng,et al. Height measurement method of hydraulic support based on multi-sensor data fusion[J]. Industry and Mine Automation,2017,43(9):65-69. DOI: 10.13272/j.issn.1671-251x.2017.09.012

    [6] 谢嘉成. VR环境下综采工作面“三机”监测与动态规划方法研究[D]. 太原: 太原理工大学, 2018.

    XIE Jiacheng. Method of monitoring and dynamic planning for three machines in a fully mechanized coal-mining face under VR environment [D]. Taiyuan: Taiyuan University of Technology, 2018 .

    [7] 王学文,葛星,谢嘉成,等. 基于真实煤层环境的液压支架运动虚拟仿真方法[J]. 煤炭科学技术,2020,48(2):158-163. DOI: 10.13199/j.cnki.cst.2020.02.020

    WANG Xuewen,GE Xing,XIE Jiacheng,et al. Virtual simulation method of hydraulic support movement based on real coal seam environment[J]. Coal Science and Technology,2020,48(2):158-163. DOI: 10.13199/j.cnki.cst.2020.02.020

    [8] 赵昊,史艳楠,张冲冲. 充填液压支架三维场景监测系统设计[J]. 工矿自动化,2020,46(8):82-88. DOI: 10.13272/j.issn.1671-251x.2020030005

    ZHAO Hao,SHI Yannan,ZHANG Chongchong. Design of three-dimensional scene monitoring system for filling hydraulic support[J]. Industry and Mine Automation,2020,46(8):82-88. DOI: 10.13272/j.issn.1671-251x.2020030005

    [9] 申世恒. 交互式局部约束织物纹理映射技术的研究与实现[D]. 上海: 东华大学, 2012.

    SHEN Shiheng. Research and implementation of interactive regional constrained texture mapping with fabric texture [D]. Shanghai: Donghua University, 2012.

    [10] 刘鹏坤,王聪,刘帅. 综采工作面多视觉全局坐标系研究[J]. 煤炭学报,2019,44(10):3272-3280. DOI: 10.13225/j.cnki.jccs.2018.1485

    LIU Pengkun,WANG Cong,LIU Shuai. Multi-vision global coordinate system in fully mechanized coal mining face[J]. Journal of China Coal Society,2019,44(10):3272-3280. DOI: 10.13225/j.cnki.jccs.2018.1485

    [11] 陈凯,王翔,刘明鑫,等. 坐标转换理论及其在半实物仿真姿态矩阵转换中的应用[J]. 指挥控制与仿真,2017,39(2):118-122. DOI: 10.3969/j.issn.1673-3819.2017.02.022

    CHEN Kai,WANG Xiang,LIU Mingxin,et al. Coordinate transformation with application in HWIL simulation[J]. Command Control & Simulation,2017,39(2):118-122. DOI: 10.3969/j.issn.1673-3819.2017.02.022

    [12] 任怀伟,李帅帅,赵国瑞,等. 基于深度视觉原理的工作面液压支架支撑高度与顶梁姿态角测量方法研究[J]. 采矿与安全工程学报,2022,39(1):72-81,93. DOI: 10.13545/j.cnki.jmse.2020.0587

    REN Huaiwei,LI Shuaishuai,ZHAO Guorui,et al. Measurement method of support height and roof beam posture angles for working face hydraulic support based on depth vision[J]. Journal of Mining & Safety Engineering,2022,39(1):72-81,93. DOI: 10.13545/j.cnki.jmse.2020.0587

    [13] 王大虎,史艳楠,陈文博,等. 基于3D MAX和Premiere的煤矿安全培训系统[J]. 煤矿安全,2014,45(12):230-232.

    WANG Dahu,SHI Yannan,CHEN Wenbo,et al. Coal mine safety training system based on 3D MAX and Premiere[J]. Safety in Coal Mines,2014,45(12):230-232.

    [14] 谢嘉成,王学文,杨兆建,等. 综采工作面煤层装备联合虚拟仿真技术构想与实践[J]. 煤炭科学技术,2019,47(5):162-168. DOI: 10.13199/j.cnki.cst.2019.05.026

    XIE Jiacheng,WANG Xuewen,YANG Zhaojian,et al. Technical conception and practice of joint virtual simulation for coal seam and equipment in fully-mechanized coal mining face[J]. Coal Science and Technology,2019,47(5):162-168. DOI: 10.13199/j.cnki.cst.2019.05.026

    [15] 孙宇. 支持Unity3D的多Kinect人机交互技术与软件[D]. 杭州: 浙江大学, 2015.

    SUN Yu. Multi-Kinect human-computer interaction technology and software based on Unity3D[D]. Hangzhou: Zhejiang University, 2015.

    [16] 谢嘉成,王学文,郝尚清,等. 工业互联网驱动的透明综采工作面运行系统及关键技术[J]. 计算机集成制造系统,2019,25(12):3160-3169.

    XIE Jiacheng,WANG Xuewen,HAO Shangqing,et al. Operating system and key technologies of transparent fully mechanized mining face driven by industrial Internet[J]. Computer Integrated Manufacturing Systems,2019,25(12):3160-3169.

    [17] 韩菲娟,任芳,谢嘉成,等. 综采工作面三机虚拟仿真系统设计及关键技术研究[J]. 机械设计与制造,2019(8):184-187. DOI: 10.3969/j.issn.1001-3997.2019.08.048

    HAN Feijuan,REN Fang,XIE Jiacheng,et al. Design and key technologies of virtual simulation system for three machines in fully mechanized coal mining face[J]. Machinery Design & Manufacture,2019(8):184-187. DOI: 10.3969/j.issn.1001-3997.2019.08.048

    [18] 谢嘉成,杨兆建,王学文,等. 综采工作面三机虚拟协同关键技术研究[J]. 工程设计学报,2018,25( 1):85-93. DOI: 10.3785/j.issn.1006-754X.2018.01.012

    XIE Jiacheng,YANG Zhaojian,WANG Xuewen,et al. Research on key technologies of virtual collaboration of three machines in fully mechanized coal mining face[J]. Chinese Journal of Engineering Design,2018,25( 1):85-93. DOI: 10.3785/j.issn.1006-754X.2018.01.012

    [19] 韩菲娟. 基于 Unity3D 的综采工作面“三机”虚拟仿真系统[D]. 太原: 太原理工大学, 2018.

    HAN Feijuan. The virtual simulation system of three machines in fully mechanized coal mining face based on Unity3D[D]. Taiyuan: Taiyuan University of Technology, 2018.

    [20] 谢嘉成,杨兆建,王学文,等. 虚拟现实环境下液压支架部件无缝联动方法研究[J]. 工程设计学报,2017,24(4):373-379. DOI: 10.3785/j.issn.1006-754X.2017.04.002

    XIE Jiacheng,YANG Zhaojian,WANG Xuewen,et al. Research of seamless linkage method for hydraulic support components under VR environment[J]. Chinese Journal of Engineering Design,2017,24(4):373-379. DOI: 10.3785/j.issn.1006-754X.2017.04.002

  • 期刊类型引用(9)

    1. 罗珊珊,何泽家. 基于粒子滤波泰勒算法的变电站人员定位跟踪系统. 微型电脑应用. 2024(03): 102-107+111 . 百度学术
    2. 李飞,潘红光,魏绪强,陈海舰,郭齐,白俊明. 基于PDR算法与伪平面技术的井下人员定位方法研究. 西安科技大学学报. 2024(03): 587-596 . 百度学术
    3. 王泰基. 基于生成对抗网络的井下人员步长估计方法. 工矿自动化. 2024(06): 103-111 . 本站查看
    4. 万蓬勃,李学青,汤运启. 一种改进的行人航迹推算算法研究. 电子测量技术. 2024(11): 69-77 . 百度学术
    5. 李海川,贺星亮,贾仟国,李利. 基于S3DD-YOLOv8n的矿工行为检测算法. 矿业安全与环保. 2024(05): 96-104 . 百度学术
    6. 崔丽珍,张清宇,郭倩倩,马宝良. 基于CNN-LSTM的井下人员行为模式识别模型. 无线电工程. 2023(06): 1375-1381 . 百度学术
    7. 卫庆芳,陈勇,薛文军,马文秀,裴科科. 基于室内定位的改进PDR算法研究. 火力与指挥控制. 2023(04): 102-107 . 百度学术
    8. 郭倩倩,崔丽珍,杨勇,赫佳星,史明泉. 基于LSTM个性化步长估计的井下人员精准定位PDR算法. 工矿自动化. 2022(01): 33-39 . 本站查看
    9. 李自森,毛馨凯,王洪亮. 选煤厂智能照明控制. 工矿自动化. 2022(S1): 124-125+132 . 本站查看

    其他类型引用(12)

图(12)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  45
  • PDF下载量:  24
  • 被引次数: 21
出版历程
  • 收稿日期:  2022-03-23
  • 修回日期:  2022-07-15
  • 网络出版日期:  2022-06-22
  • 刊出日期:  2022-08-08

目录

    /

    返回文章
    返回