WU Xinzhong, LUO Kang, TANG Shoufeng, et al. Fault diagnosis of mining rolling bearings based on Superlet Transform and OD-ConvNeXt-ELA[J]. Journal of Mine Automation,2024,50(12):120-127. DOI: 10.13272/j.issn.1671-251x.2024080056
Citation: WU Xinzhong, LUO Kang, TANG Shoufeng, et al. Fault diagnosis of mining rolling bearings based on Superlet Transform and OD-ConvNeXt-ELA[J]. Journal of Mine Automation,2024,50(12):120-127. DOI: 10.13272/j.issn.1671-251x.2024080056

Fault diagnosis of mining rolling bearings based on Superlet Transform and OD-ConvNeXt-ELA

More Information
  • Received Date: August 20, 2024
  • Revised Date: December 26, 2024
  • Available Online: December 05, 2024
  • In response to the limitations of current fault diagnosis methods for mining rolling bearings, which suffer from limited feature extraction capabilities and poor generalization, a fault diagnosis method based on Superlet Transform (SLT) and OD-ConvNeXt-ELA was proposed. Built upon ConvNeXt-T, Batch Normalization (BN) technology was introduced to improve the network's generalization ability. Omni-dimensional Dynamic Convolution (ODConv) replaced the original depthwise separable convolution to enhance the adaptability of the network. Efficient Local Attention (ELA) was incorporated to focus the network on key feature locations. This formed the OD-ConvNeXt-ELA network model for fault diagnosis of mining rolling bearings. To fully leverage the image feature extraction ability of the OD-ConvNeXt-ELA model, SLT was used to convert the collected one-dimensional vibration signal of the rolling bearing into a two-dimensional time-frequency image, which was then input into the OD-ConvNeXt-ELA for model training. Fault diagnosis experiments were conducted using the bearing datasets from Case Western Reserve University (CWRU) and Paderborn University (PU). The results showed that for the CWRU bearing dataset under a single operating condition, the average fault diagnosis accuracy of OD-ConvNeXt-ELA was 99.65%, which was an improvement of 1.61% over ConvNeXt-T. For the CWRU bearing dataset under cross-operating conditions, the average fault diagnosis accuracy of OD-ConvNeXt-ELA was 87.50%, which was an improvement of 3.30% over ConvNeXt-T. For the PU bearing dataset under cross-operating conditions, the average fault diagnosis accuracy of OD-ConvNeXt-ELA was 89.33%, an improvement of 3.46% over ConvNeXt-T. The fault diagnosis method based on SLT and OD-ConvNeXt-ELA shows high accuracy and strong generalization ability under cross-bearing, cross-operating conditions, and noise interference.

  • [1]
    杨春才,李向磊,吕晓伟. 煤机设备轴承故障诊断方法[J]. 工矿自动化,2023,49(12):147-151.

    YANG Chuncai,LI Xianglei,LYU Xiaowei. Diagnosis method for bearing faults in coal mining equipment[J]. Journal of Mine Automation,2023,49(12):147-151.
    [2]
    韩争杰,牛荣军,马子魁,等. 基于注意力机制改进残差神经网络的轴承故障诊断方法[J]. 振动与冲击,2023,42(16):82-91.

    HAN Zhengjie,NIU Rongjun,MA Zikui,et al. Bearing fault diagnosis methods based on an attentional-mechanism-improved residual neural network[J]. Journal of Vibration and Shock,2023,42(16):82-91.
    [3]
    郭俊锋,谭宝宏,王智明. 基于MDAM−GhostCNN的滚动轴承故障诊断方法[J/OL]. 北京航空航天大学学报:1-15[2024-05-13]. https://doi.org/10.13700/j.bh.1001-5965.2023.0224.

    GUO Junfeng,TAN Baohong,WANG Zhiming. Fault diagnosis method of rolling bearing based on MDAM-GhostCNN[J/OL]. Journal of Beijing University of Aeronautics and Astronautics:1-15[2024-05-13]. https://doi.org/10.13700/j.bh.1001-5965.2023.0224.
    [4]
    雷春丽,夏奔锋,薛林林,等. 基于MTF−CNN的滚动轴承故障诊断方法[J]. 振动与冲击,2022,41(9):151-158.

    LEI Chunli,XIA Benfeng,XUE Linlin,et al. Rolling bearing fault diagnosis method based on MTF-CNN[J]. Journal of Vibration and Shock,2022,41(9):151-158.
    [5]
    常淼,沈艳霞. 基于改进卷积神经网络的风电轴承故障诊断策略[J]. 电力系统保护与控制,2021,49(6):131-137.

    CHANG Miao,SHEN Yanxia. Fault diagnosis strategy of a wind power bearing based on an improved convolutional neural network[J]. Power System Protection and Control,2021,49(6):131-137.
    [6]
    邓飞跃,吕浩洋,顾晓辉,等. 基于轻量化神经网络Shuffle−SENet的高速动车组轴箱轴承故障诊断方法[J]. 吉林大学学报(工学版),2022,52(2):474-482.

    DENG Feiyue,LYU Haoyang,GU Xiaohui,et al. Fault diagnosis of high-speed train axle bearing based on a lightweight neural network Shuffle-SENet[J]. Journal of Jilin University (Engineering and Technology Edition),2022,52(2):474-482.
    [7]
    LIU Zhuang,MAO Hanzi,WU Chaoyuan,et al. A ConvNet for the 2020s[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,New Orleans,2022:11966-11976.
    [8]
    刘立波,郗思宇,邓箴. 结合改进ConvNeXt网络与知识蒸馏的天气识别[J]. 光学精密工程,2023,31(14):2123-2134. DOI: 10.37188/OPE.20233114.2123

    LIU Libo,XI Siyu,DENG Zhen. Weather recognition combining improved ConvNeXt models with knowledge distillation[J]. Optics and Precision Engineering,2023,31(14):2123-2134. DOI: 10.37188/OPE.20233114.2123
    [9]
    杨环宇,王军,吴祥,等. 一种坐标通道注意力深度学习网络的军用飞机识别方法[J]. 兵工学报,2024,45(7):2128-2143.

    YANG Huanyu,WANG Jun,WU Xiang,et al. A method for military aircraft recognition using a coordinate attention-based deep learning network[J]. Acta Armamentarii,2024,45(7):2128-2143.
    [10]
    郭盼盼,张文斌,崔奔,等. 基于增强深度卷积神经网络的滚动轴承多工况故障诊断方法[J/OL]. 振动工程学报:1-14[2024-06-25]. https://kns.cnki.net/kcms/detail/32.1349.TB.20230830.1129.002.html.

    GUO Panpan,ZHANG Wenbin,CUI Ben,et al. Fault diagnosis method of rolling bearing under multiple working conditions based on enhanced deep convolutional neural network[J/OL]. Journal of Vibration Engineering:1-14[2024-06-25]. https://kns.cnki.net/kcms/detail/32.1349.TB.20230830.1129.002.html.
    [11]
    SEGU M,TONIONI A,TOMBARI F. Batch normalization embeddings for deep domain generalization[J]. Pattern Recognition,2023,135. DOI: 10.1016/j.patcog.2022.109115.
    [12]
    IOFFE S,SZEGEDY C,IOFFE S,et al. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]. 32nd International Conference on Machine Learning,Lille,2015:448-456.
    [13]
    LI Yufei,XIN Yufei,LI Xinni,et al. Omni-dimensional dynamic convolution feature coordinate attention network for pneumonia classification[J]. Visual Computing for Industry,Biomedicine,and Art,2024,7(1):17-29. DOI: 10.1186/s42492-024-00168-5
    [14]
    XU Wei,WAN Yi. ELA:efficient local attention for deep convolutional neural networks[EB/OL]. [2024-06-25]. https://arxiv.org/abs/2403.01123v1.
    [15]
    MOCA V V,BÂRZAN H,NAGY-DĂBÂCAN A,et al. Time-frequency super-resolution with superlets[J]. Nature Communications,2021,12(1). DOI: 10.1038/s41467-020-20539-9.
    [16]
    曾志超,徐玥,王景玉,等. 基于SOE−YOLO轻量化的水面目标检测算法[J]. 图学学报,2024,45(4):736-744.

    ZENG Zhichao,XU Yue,WANG Jingyu,et al. A water surface target detection algorithm based on SOE-YOLO lightweight network[J]. Journal of Graphics,2024,45(4):736-744.
    [17]
    段洁利,于世伟,解明坤,等. 基于一维轻量化CNN的山地索道轴承故障诊断[J]. 农业工程学报,2023,39(14):70-79. DOI: 10.11975/j.issn.1002-6819.202304173

    DUAN Jieli,YU Shiwei,XIE Mingkun,et al. Fault diagnosis of mountain ropeway bearings based on one-dimensional lightweight CNN[J]. Transactions of the Chinese Society of Agricultural Engineering,2023,39(14):70-79. DOI: 10.11975/j.issn.1002-6819.202304173
    [18]
    SMITH W A,RANDALL R B. Rolling element bearing diagnostics using the Case Western Reserve University data:a benchmark study[J]. Mechanical Systems and Signal Processing,2015,64:100-131.
    [19]
    LESSMEIER C,KIMOTHO J K,ZIMMER D,et al. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors:a benchmark data set for data-driven classification[C]. PHM Society European Conference,Bilbao,2016. DOI: 10.36001/phme.2016.v3i1.1577.
    [20]
    窦桂东,白艺硕,王均利,等. 基于深度学习的矿井滚动轴承故障诊断方法[J]. 工矿自动化,2024,50(1):96-103,154.

    DOU Guidong,BAI Yishuo,WANG Junli,et al. A fault diagnosis method for mine rolling bearings based on deep learning[J]. Journal of Mine Automation,2024,50(1):96-103,154.
    [21]
    LIU Chunyang,BAN Yuxuan,LI Hongyu,et al. Accurate recognition method for rolling bearing failure of mine hoist in strong noise environment[J]. Machines,2023,11(6). DOI: 10.3390/machines11060632.
  • Related Articles

    [1]WANG Jianxin, CHENG Junhao. Research on relationship between tailing slurry concentration and ultrasonic attenuation coefficient[J]. Journal of Mine Automation, 2020, 46(2): 45-49. DOI: 10.13272/j.issn.1671-251x.2019050038
    [2]WANG Jianxin, GAO Xin, ZHANG Yanping. Numerical simulation analysis of attenuation characteristics of ultrasonic propagation in tailing slurry[J]. Journal of Mine Automation, 2018, 44(3): 65-69. DOI: 10.13272/j.issn.1671-251x.2017090070
    [3]LIU Guanhua, YANG Chen, LIU Haoxiong. An experimental research on ultrasonic parameters of coal[J]. Journal of Mine Automation, 2018, 44(1): 68-73. DOI: 10.13272/j.issn.1671-251x.2018.01.003
    [4]LIU Lili. Design of mine-used ultrasonic transducer of wind speed and directio[J]. Journal of Mine Automation, 2014, 40(9): 103-106. DOI: 10.13272/j.issn.1671-251x.2014.09.024
    [5]TIAN Yanxin, WU Yincheng, ZENG Wei, LIU Jingwei. Study of calibration system of borehole opening parameters based on ultrasonic principle[J]. Journal of Mine Automation, 2014, 40(3): 86-89. DOI: 10.13272/j.issn.1671-251x.2014.03.023
    [6]Zhong Li-yu. Research of Mine-used Ultrasonic Wave Level Meter with Large Measuring Range[J]. Journal of Mine Automation, 2010, 36(3): 110-112.
    [7]WANG Wei-dong, XU Zhi-qiang, WANG Zhen-chong. Design of Ultrasonic Detector of Particle Size of Coal Water Mixture Based on ARM+uC/OS-Ⅱ[J]. Journal of Mine Automation, 2008, 34(1): 41-44.
    [8]YANG Xue-cun, HOU Yuan-bi. Development of Ultrasonic Water Level of Statical Force[J]. Journal of Mine Automation, 2005, 31(4): 25-27.
    [9]GUO Yong-dong, LIU Chun-sheng. Study on Auto-tracking Circuit of Frequency of a New Ultrasonic Generator[J]. Journal of Mine Automation, 2003, 29(1): 7-8.
    [10]LIAO Hua-li, ZHOU Ju. Study in Ultrasonic Generator in Power Ultrasonic Fabricatio[J]. Journal of Mine Automation, 1999, 25(6): 11-12.

Catalog

    Article Metrics

    Article views (59) PDF downloads (17) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return