WANG Jianxin, GAO Xin, ZHANG Yanping. Numerical simulation analysis of attenuation characteristics of ultrasonic propagation in tailing slurry[J]. Journal of Mine Automation, 2018, 44(3): 65-69. DOI: 10.13272/j.issn.1671-251x.2017090070
Citation: WANG Jianxin, GAO Xin, ZHANG Yanping. Numerical simulation analysis of attenuation characteristics of ultrasonic propagation in tailing slurry[J]. Journal of Mine Automation, 2018, 44(3): 65-69. DOI: 10.13272/j.issn.1671-251x.2017090070

Numerical simulation analysis of attenuation characteristics of ultrasonic propagation in tailing slurry

More Information
  • In view of problems that existing ultrasonic detection method for concentration of tailing slurry has low accuracy and too many parameters, and cannot accurately reflect attenuation characteristics of the ultrasonic propagation in tailing slurry, attenuation characteristics of ultrasonic propagation in tailing slurry with fixed parameters were simulated by using Matlab software based on the theoretical analysis of attenuation characteristics of ultrasonic, and relationships between ultrasonic attenuation coefficient and ultrasonic frequency, particle size and density of tailings slurry were obtained: when the ultrasonic frequency is constant, the scattering attenuation increases with increasing of the particle size of tailing slurry; when the ultrasonic frequency and particle size of tail slurry are a fixed value, the viscosity attenuation coefficient increases with increasing of the density of tail slurry; when the ultrasonic frequency and density of tailing slurry are a fixed value, the larger of the particle size of tailings slurry, the smaller of the viscosity attenuation coefficient; both of the scattering attenuation and viscosity attenuation increase with increasing of the ultrasonic frequency, the scattering attenuation coefficient is proportional to the fourth power of ultrasonic frequency, and the viscosity attenuation coefficient is proportional to the ultrasonic frequency. The analysis results provide a theoretical basis for design of ultrasonic concentration sensor with high precision.
  • Related Articles

    [1]ZHANG Lian, JING Tingwei, ZHANG Lu, LI Mengtian, YANG Kai. Research on frequency stability of magnetic coupling wireless power transfer system[J]. Journal of Mine Automation, 2021, 47(3): 95-100. DOI: 10.13272/j.issn.1671-251x.2020080090
    [2]FENG Liu, HE Jialua. Research on four-coil structure of magnetically coupled resonant wireless power transmission system[J]. Journal of Mine Automation, 2019, 45(5): 73-78. DOI: 10.13272/j.issn.1671-251x.17385
    [3]WANG Yameng, WU Xinghua, LIN Lingyan, SONG Jiancheng. Magnetic coupling resonant wireless power transmission system based on variable coil structure[J]. Journal of Mine Automation, 2017, 43(9): 89-95. DOI: 10.13272/j.issn.1671-251x.2017.09.016
    [4]LAN Yongjun, GONG Lijiao, CAI Xinhong, LI Hongwei. Analysis of frequency characteristics of magnetic coupled resonant wireless power transmission system[J]. Journal of Mine Automation, 2016, 42(5): 67-70. DOI: 10.13272/j.issn.1671-251x.2016.05.015
    [5]FAN Yingjie, ZHANG Kairu, ZHANG Linlin, WANG Yi, DI Dongzhao. Study of asymmetrical magnetic coupled resonant wireless power transmission system[J]. Journal of Mine Automation, 2016, 42(5): 63-66. DOI: 10.13272/j.issn.1671-251x.2016.05.014
    [6]FAN Yingjie, ZHANG Kairu, DI Dongzhao, GU Huali, HAN Lu. Study of wireless power transmission system of small size resonator[J]. Journal of Mine Automation, 2016, 42(3): 48-51. DOI: 10.13272/j.issn.1671-251x.2016.03.011
    [7]ZHANG Guoyuan, WANG Xi, ZHAO Duan. Analysis of transmission characteristics of magnetically-coupled resonant wireless power transmission system[J]. Journal of Mine Automation, 2015, 41(8): 85-88. DOI: 10.13272/j.issn.1671-251x.2015.08.021
    [8]GAO Shuang, CUI Langfu, CHENG Peng, GUO Xing, DENG Liming, SANG Shengbo. Detection system of resonance frequency for magnetostrictive material based on AD5933[J]. Journal of Mine Automation, 2015, 41(5): 18-22. DOI: 10.13272/j.issn.1671-251x.2015.05.005
    [9]XUE Hui, LIU Xiaowen, SUN Zhifeng, ZHANG Guoyuan. Research of load characteristics of wireless power transmission system based on magnetic coupling resonance[J]. Journal of Mine Automation, 2015, 41(3): 66-70. DOI: 10.13272/j.issn.1671-251x.2015.03.017
    [10]ZHENG Li-na. Testing Frequency Characteristic of Analytical Circuit Based on EWB Software[J]. Journal of Mine Automation, 2001, 27(5): 35-36.
  • Cited by

    Periodical cited type(6)

    1. 陈书航,王世博,葛世荣,王赟,马广军. 综采工作面刮板输送机煤流时空分布研究. 工矿自动化. 2024(09): 98-107 . 本站查看
    2. 王桂忠,叶隆浩. 基于煤流量识别的带式输送机节能控制系统设计与研究. 煤矿机械. 2023(01): 14-17 .
    3. 周爱民,叶飞,施旭东,赵培成. 基于超声波传感器的带式输送机烟丝瞬时流量监测系统的设计. 现代信息科技. 2022(03): 149-152 .
    4. 唐文杰. 带式输送机运行状态智能监控体系的研究. 机械管理开发. 2022(09): 300-301+304 .
    5. 毛清华,毛金根,马宏伟,张旭辉,李铮. 矿用带式输送机智能监测系统研究. 工矿自动化. 2020(06): 48-52+58 . 本站查看
    6. 李瑶,王义涵. 带式输送机煤流量自适应检测方法. 工矿自动化. 2020(06): 98-102 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (54) PDF downloads (10) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return