LIU Guanhua, YANG Chen, LIU Haoxiong. An experimental research on ultrasonic parameters of coal[J]. Journal of Mine Automation, 2018, 44(1): 68-73. DOI: 10.13272/j.issn.1671-251x.2018.01.003
Citation: LIU Guanhua, YANG Chen, LIU Haoxiong. An experimental research on ultrasonic parameters of coal[J]. Journal of Mine Automation, 2018, 44(1): 68-73. DOI: 10.13272/j.issn.1671-251x.2018.01.003

An experimental research on ultrasonic parameters of coal

More Information
  • Ultrasonic velocity, attenuation coefficient, time domain and frequency domain features in anthracite coal of Daanshan and fat coal of Sanhejian were studied by acoustic emission experimental techniques. Research results indicate that affected by voidage and moisture content, the mean wave velocity in anthracite coal is larger than that of the average velocity in fat coal, and the mean value of its attenuation coefficient is lower than that of attenuation coefficient in fat coal.Time domain and frequency domain features of ultrasonic are influenced by coal quality and waveform frequency,anthracite has greater amplitudes of main frequency and shorter decay period than fat coal.When the wave frequency increases, the decay time decreases and energy of transmission waveform is more gathered in main frequency. These conclusions can provide theory basis for determination of coal quality and type before coal mining.
  • Related Articles

    [1]QIU Jinbo, LIU Cong, WU Haokun, ZHUANG Deyu, ZHU Shengqiang. Current status and key technology prospects of shearer intelligent development[J]. Journal of Mine Automation, 2024, 50(7): 64-78. DOI: 10.13272/j.issn.1671-251x.2024050039
    [2]FANG Xinqiu, FENG Haotian, LIANG Minfu, CHEN Ningning, WU Gang, SONG Yang. Key technology system of fiber optic sensing for intelligent coal mining[J]. Journal of Mine Automation, 2023, 49(6): 78-87. DOI: 10.13272/j.issn.1671-251x.18107
    [3]HAN Zhe, XU Yuanqiang, ZHANG Desheng, ZHAO Quanwen, DU Ming, LI Hui, ZHOU Jie, ZHANG Shuai, LIU Jie, GAO Jianxun, WEN Cunbao, ZHOU Xiang, ZHAO Kai. Non-repeated support advanced support intelligent control system[J]. Journal of Mine Automation, 2023, 49(4): 141-146, 152. DOI: 10.13272/j.issn.1671-251x.2022090004
    [4]DAI Wei, WANG Yudong, DONG Liang, ZHAO Yuemin. Development and exploration of intelligent dense medium separation technology for coal[J]. Journal of Mine Automation, 2022, 48(11): 20-26, 44. DOI: 10.13272/j.issn.1671-251x.2022060106
    [5]GAO Qiang, WANG Jun, GAO Xiaoqiang, REN Wenqing. Remote intelligent control of continuous shearer[J]. Journal of Mine Automation, 2021, 47(S1): 51-54.
    [6]GAO Xicai, MA Tengfei, WANG Qi, LIU Shuai, ZHANG Xichen, FAN Kai, TANG Jianqiang, HU Bin. Intelligent fully mechanized mining support technology and equipment for thin-medium-thick coal seam[J]. Journal of Mine Automation, 2021, 47(11): 95-100. DOI: 10.13272/j.issn.1671-251x.2021080037
    [7]LI Xiaoqing, YU Miao, SHEN Zuying, CHEN Xuedong, ZENG Lizhan. Design of digital intelligent rope guider[J]. Journal of Mine Automation, 2014, 40(5): 81-84. DOI: 10.13272/j.issn.1671-251x.2014.05.020
    [8]ZHA Bing. Design of intelligent control system for vehicle cooling fa[J]. Journal of Mine Automation, 2013, 39(3): 98-100.
    [9]ZHANG Guo-Wei. Research of Fault Detection and Intelligent Diagnosis Technology of Heavy-loading Machinery in Copper-scandium Metal Mine[J]. Journal of Mine Automation, 2011, 37(8): 34-37.
    [10]LEI Ru-hai, MA Yong, WANG Ju. Intelligent Control of Filter Pressing System for Float Coal[J]. Journal of Mine Automation, 2005, 31(5): 1-3.
  • Cited by

    Periodical cited type(30)

    1. 郝晓旭. 采煤机自动调高控制系统研究与应用. 现代矿业. 2025(02): 190-192+196 .
    2. 李重重,刘清. 基于截割顶底板高度预测模型的采煤机自动调高技术. 工矿自动化. 2024(01): 9-16 . 本站查看
    3. 李晓真,张海波,王光远. 基于ISSA-FNN的采煤机健康状态评估. 煤矿机械. 2024(03): 168-171 .
    4. 周展,桓磊,蒋峰,张浩涯,韩蓓蕾. 基于矿用5G技术的采煤机智能化技术. 陕西煤炭. 2024(02): 114-117 .
    5. 李重重,姚钰鹏. 基于工况触发的采煤机滚筒截割高度模板生成方法. 工矿自动化. 2024(04): 144-152 . 本站查看
    6. 李存有. 薄煤层采煤机电缆结构优化与应用研究. 矿业装备. 2024(04): 134-136 .
    7. 刘敏. 煤矿采煤机自动化与智能化技术探讨. 矿业装备. 2024(04): 128-130 .
    8. 邱锦波,刘聪,吴昊坤,庄德玉,朱胜强. 采煤机智能化发展现状及关键技术展望. 工矿自动化. 2024(07): 64-78 . 本站查看
    9. 王鑫,吴士良. 智能综采工作面系统设计及关键技术研究. 中国煤炭. 2024(09): 73-79 .
    10. 荆瑞俊,冯晨钟,李昕. 基于多传感器数据融合的煤机行进监测系统. 智能计算机与应用. 2024(10): 189-193 .
    11. 王忠宾,魏东,司垒,梁超权,谭超,赵亦辉. 基于协议匹配和数据压缩的采煤机数据管理技术研究. 煤炭科学技术. 2024(11): 89-102 .
    12. 杨柯,熊祖强,王春,付斌. 综采工作面液压支架阻力精准采集及分析技术研究. 中国煤炭. 2024(12): 131-139 .
    13. 王月辉. 煤矿采煤机智能化关键技术研究. 机械管理开发. 2023(01): 257-259 .
    14. 郑学召,严瑞锦,蔡国斌,王宝元,何芹健. 矿井动目标精确定位技术及优化方法研究. 工矿自动化. 2023(02): 14-22 . 本站查看
    15. 种磊. 5G技术在煤矿智能化建设的应用. 陕西煤炭. 2023(02): 184-187+204 .
    16. 卢国志,胡斐,李鑫,姚春卉. 液压支架实时压力数据自动提取与动态分析方法研究. 煤炭工程. 2023(03): 120-126 .
    17. 李荣涛. 采煤机自动控制系统的安全优化研究. 机械管理开发. 2023(06): 151-152+155 .
    18. 崔耀,叶壮. 基于5G+云边端协同技术的采煤机智能调高调速控制系统设计与应用. 煤炭科学技术. 2023(06): 205-216 .
    19. 王明耀. 智能化综采工作面自动化高质量技术应用分析. 中国设备工程. 2023(14): 28-30 .
    20. 杨晓林. 采煤机牵引机构接触应力分析及其结构优化研究. 机械管理开发. 2023(07): 163-164+167 .
    21. 张磊. 互联网+采煤机智能化关键技术研究. 矿业装备. 2023(06): 41-43 .
    22. 崔耀,吴景红,叶壮,张森浪. 高瓦斯综放工作面智能放煤关键技术研究与应用. 煤炭科学技术. 2023(10): 252-265 .
    23. 邬鑫,逯晓臻,李战华. 关于综采工作面采煤机智能化技术的研究. 内蒙古煤炭经济. 2023(20): 34-36 .
    24. 巩师鑫,任怀伟,黄伟,李建. 复杂起伏煤层自适应开采截割路径优化与仿真. 煤炭科学技术. 2023(S2): 210-218 .
    25. 李博文,乔栋,赵杰,李乾,谢亚龙. 基于自适应模糊PID的采煤机滚筒调高控制技术的研究. 自动化应用. 2022(03): 135-138 .
    26. 周红旭,孙海军,张雷,王华英. 基于一维卷积神经网络的掘进机截割部磁场辅助定位技术. 河北科技大学学报. 2022(03): 231-239 .
    27. 冯国庭. 智能薄煤层等高综采工作面关键技术与装备. 煤炭科学技术. 2022(S1): 264-268 .
    28. 王清峰,陈航,周涛. 煤矿井下自动化钻进技术及装备的发展历程与展望. 矿业安全与环保. 2022(04): 45-50 .
    29. 张登山,邢海龙,张泽. 煤矿综采成套智能化控制系统研究. 工矿自动化. 2022(S1): 92-94 . 本站查看
    30. 孙晋璐,高贵军,琚林涛,时三波. 寺河二号井薄煤层综采工作面智能化系统设计. 煤炭工程. 2022(10): 17-21 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (116) PDF downloads (17) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return