JIA Yan-feng, WANG Chun-lei, XIE Hai-dong, WANG Zhi-dong. Application Research of SVM in Risk Assessment of Coal Marketing[J]. Journal of Mine Automation, 2011, 37(7): 68-71.
Citation: JIA Yan-feng, WANG Chun-lei, XIE Hai-dong, WANG Zhi-dong. Application Research of SVM in Risk Assessment of Coal Marketing[J]. Journal of Mine Automation, 2011, 37(7): 68-71.

Application Research of SVM in Risk Assessment of Coal Marketing

More Information
  • Statistical learning method of support vector machine and its application in risk management of coal marketing were introduced according to characteristics of coal marketing management. The experiments showed that the method can evaluate credit risk of customers and help coal enterprises to select quality customers, which offers decision basis to coal enterprises for actively preventing and avoiding marketing risks.
  • Related Articles

    [1]LI Tieniu, HU Binxin, LI Huakun, GENG Wencheng, HAO Pengcheng, JI Xubo, SUN Zengrong, ZHU Feng, ZHANG Hua, YANG Chengquan. Automatic picking method of microseismic first arrival time based on improved support vector machine[J]. Journal of Mine Automation, 2023, 49(3): 63-69. DOI: 10.13272/j.issn.1671-251x.2022050081
    [2]LI Fuqiang, JIANG Mingxue. Research on technical scheme of lightning strike risk assessment in coal mine[J]. Journal of Mine Automation, 2021, 47(S2): 133-134.
    [3]XU Xiaojia. Design of coal mine safety risk prevention and control and early warning system[J]. Journal of Mine Automation, 2020, 46(3): 105-108. DOI: 10.13272/j.issn.1671-251x.17554
    [4]MA Xianmin, ZHANG Xing, ZHANG Yongqiang. Fault diagnosis of explosion proof motor based on SVM and RS[J]. Journal of Mine Automation, 2017, 43(2): 35-40. DOI: 10.13272/j.issn.1671-251x.2017.02.008
    [5]ZHAO Bilong, QIAO Tiezhu. Detection method of belt longitudinal tear based on support vector machine and infrared image segmentation[J]. Journal of Mine Automation, 2014, 40(5): 30-33. DOI: 10.13272/j.issn.1671-251x.2014.05.008
    [6]SUN Yun-xiao, FANG Jian, MA Xiao-ping. Research of Prediction of Coal and Gas Outburst Based on Semi-supervised Learning and Support Vector Machine[J]. Journal of Mine Automation, 2012, 38(11): 40-42.
    [7]LI Bo, HUANG Yuan-yue. Underground Risk Assessing Method Based on Rough Set and D-S Evidence Theory[J]. Journal of Mine Automation, 2011, 37(11): 38-40.
    [8]WANG Yong, CHENG Can, DAI Ming-jun, SUN Yong. An Optimized Method for Semi-supervised Support Vector Machines[J]. Journal of Mine Automation, 2010, 36(12): 47-50.
    [9]SU Po, CHEN Qing, . Analysis of Mine Low-voltage Leakage Protection in Situation of Great Disparity between Long and Short Lines and Big Unbalanced Current[J]. Journal of Mine Automation, 2010, 36(10): 32-35.
    [10]LIU Rui-fang, MEI Xiao-a. Nonlinear Correction of Methane Sensor Based on Least Square Support Vector Machine[J]. Journal of Mine Automation, 2009, 35(5): 8-12.

Catalog

    Article Metrics

    Article views (61) PDF downloads (8) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return