GONG Yun, YANG Pangbin, JIE Xinyu. Underground image matching algorithm combining homomorphic filtering and histogram equalizatio[J]. Journal of Mine Automation, 2021, 47(10): 37-41. DOI: 10.13272/j.issn.1671-251x.2021070018
Citation: GONG Yun, YANG Pangbin, JIE Xinyu. Underground image matching algorithm combining homomorphic filtering and histogram equalizatio[J]. Journal of Mine Automation, 2021, 47(10): 37-41. DOI: 10.13272/j.issn.1671-251x.2021070018

Underground image matching algorithm combining homomorphic filtering and histogram equalizatio

More Information
  • Published Date: October 19, 2021
  • In order to solve the problem of inaccurate feature point extraction and poor matching effect of existing underground image matching algorithms, an underground image matching algorithm combining homomorphic filtering and histogram equalization is proposed. The image is sharpened by homomorphic filtering to improve the image clarity, and the image is processed by the contrast-limited adaptive histogram equalization (CLAHE) algorithm to highlight the edge detail information of the image and improve the image contrast. In order to solve the problem of mis-matching in the traditional AKAZE algorithm, on the basis of rough matching by the brute force matching algorithm, the random sampling consensus (RANSAC) algorithm based on the homography matrix is used to perform accurate matching and eliminate the mis-matched point pairs. The experimental results show that using single-parameter homomorphic filtering and CLAHE algorithm to enhance the image can stretch the gray level of the image, reduce the number of dark pixels and increase the number of bright pixels, which makes the gray level distribution smoother and helps to preserve the details and boundary information of the image. Using RANSAC algorithm based on the homography matrix for accurate matching can detect more feature points and improve the matching accuracy. The matching effect is better than that of SURF algorithm and traditional AKAZE algorithm with a maximum of 96.09%.
  • Related Articles

    [1]LIU Jing, WEI Zhiqiang, CAI Chunmeng, LIU Yang. Positioning method for roadheaders based on fusion of LiDAR and inertial navigation[J]. Journal of Mine Automation, 2025, 51(3): 78-85, 95. DOI: 10.13272/j.issn.1671-251x.2025010021
    [2]HE Jianwei. Research on the positioning method of continuous shearer in coal mines[J]. Journal of Mine Automation, 2021, 47(10): 42-48. DOI: 10.13272/j.issn.1671-251x.2020120011
    [3]YANG Lin, MA Hongwei, WANG Yan, WANG Chuanwei, ZHANG Zhenzhen. Research on method of simultaneous localization and mapping of coal mine inspection robot[J]. Journal of Mine Automation, 2019, 45(9): 18-24. DOI: 10.13272/j.issn.1671-251x.17444
    [4]TIAN Yuan. Inertial navigation positioning method of roadheader based on zero-velocity update[J]. Journal of Mine Automation, 2019, 45(8): 70-73. DOI: 10.13272/j.issn.1671-251x.2019010033
    [5]DU Jingyi, GUO Jinbao, ZHANG Bo. Inertial navigation and positioning system for underground driverless trai[J]. Journal of Mine Automation, 2018, 44(9): 5-9. DOI: 10.13272/j.issn.1671-251x.2018040022
    [6]ZHANG Shouxiang, LI Sen, SONG Lailiang. Positioning of coal mining equipments based on inertial navigation and odometer[J]. Journal of Mine Automation, 2018, 44(5): 52-57. DOI: 10.13272/j.issn.1671-251x.2018010042
    [7]JIANG Lei, YANG Liuming, WU Fangda, HAN Huijie, ZHOU Xue. Underground positioning method based on GMapping algorithm and fingerprint map constructio[J]. Journal of Mine Automation, 2017, 43(9): 96-101. DOI: 10.13272/j.issn.1671-251x.2017.09.017
    [8]TIAN Yuan. Present situation and development direction of navigation technology of boom-type roadheader[J]. Journal of Mine Automation, 2017, 43(8): 37-43. DOI: 10.13272/j.issn.1671-251x.2017.08.008
    [9]WANG Zhenghe. Trajectory generation algorithm of inertial navigation based on smart phone[J]. Journal of Mine Automation, 2015, 41(5): 87-90. DOI: 10.13272/j.issn.1671-251x.2015.05.021
    [10]LI Lu, MA Shao-yi. Construction of Mine-map Graph Correction System Based on MapX[J]. Journal of Mine Automation, 2009, 35(11): 115-116.
  • Cited by

    Periodical cited type(9)

    1. 曹建东. 煤矿综采工作面采煤机截割系统方案设计与应用. 机械管理开发. 2022(06): 227-228+231 .
    2. 宋单阳,杨金衡,陶心雅,卢春贵,田慕琴,宋建成. 基于非完整性约束的采煤机定位方法. 工矿自动化. 2022(07): 52-57 . 本站查看
    3. 武元军. 薄煤层综采工作面采煤机组合定位方法研究. 矿业装备. 2021(03): 216-217 .
    4. 杨金衡,宋单阳,田慕琴,宋建成,许春雨. 基于自适应卡尔曼滤波的双惯导采煤机定位方法. 工矿自动化. 2021(07): 14-20+28 . 本站查看
    5. 任广玉. 大采高智能化综采工作面设备配套工艺研究. 自动化应用. 2021(03): 122-123+127 .
    6. 任怀伟,赵国瑞,周杰,文治国,丁艳,李帅帅. 智能开采装备全位姿测量及虚拟仿真控制技术. 煤炭学报. 2020(03): 956-971 .
    7. 王守波. 综放工作面采煤工艺可靠性研究. 中国设备工程. 2020(13): 131-132 .
    8. 李帅帅,任怀伟. 综采工作面“三机”设备位姿测量技术研究现状与展望. 煤炭科学技术. 2020(09): 218-226 .
    9. 胡光军,廖洪波,兰利平,吴寻云. 极近距离极薄煤层软顶控制技术优化. 矿业工程研究. 2020(04): 6-12 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (135) PDF downloads (17) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return