Citation: | WEI Feng, MA Long. Locality-sensitive hashing K-means algorithm for large-scale datasets[J]. Journal of Mine Automation,2023,49(3):53-62. DOI: 10.13272/j.issn.1671-251x.2022080018 |
[1] |
杜毅博,赵国瑞,巩师鑫. 智能化煤矿大数据平台架构及数据处理关键技术研究[J]. 煤炭科学技术,2020,48(7):177-185. DOI: 10.13199/j.cnki.cst.2020.07.018
DU Yibo,ZHAO Guorui,GONG Shixin. Study on big data platform architecture of intelligent coal mine and key technologies of data processing[J]. Coal Science and Technology,2020,48(7):177-185. DOI: 10.13199/j.cnki.cst.2020.07.018
|
[2] |
武福生,卜滕滕,王璐. 煤矿安全智能化及其关键技术[J]. 工矿自动化,2021,47(9):108-112. DOI: 10.13272/j.issn.1671-251x.17833
WU Fusheng,BU Tengteng,WANG Lu. Coal mine safety intelligence and key technologies[J]. Industry and Mine Automation,2021,47(9):108-112. DOI: 10.13272/j.issn.1671-251x.17833
|
[3] |
胡青松,张赫男,李世银,等. 基于大数据与AI驱动的智能煤矿目标位置服务技术[J]. 煤炭科学技术,2020,48(8):121-130. DOI: 10.13199/j.cnki.cst.2020.08.015
HU Qingsong,ZHANG Henan,LI Shiyin,et al. Intelligent coal mine target location service technology based on big data and AI driven[J]. Coal Science and Technology,2020,48(8):121-130. DOI: 10.13199/j.cnki.cst.2020.08.015
|
[4] |
MAYA G P S,CHINTALA B R. Big data challenges and opportunities in agriculture[J]. International Journal of Agricultural and Environmental Information Systems,2020,11(1):48-66. DOI: 10.4018/IJAEIS.2020010103
|
[5] |
叶鸥,窦晓熠,付燕,等. 融合轻量级网络和双重注意力机制的煤块检测方法[J]. 工矿自动化,2021,47(12):75-80. DOI: 10.13272/j.issn.1671-251x.2021030075
YE Ou,DOU Xiaoyi,FU Yan,et al. Coal block detection method integrating lightweight network and dual attention mechanism[J]. Industry and Mine Automation,2021,47(12):75-80. DOI: 10.13272/j.issn.1671-251x.2021030075
|
[6] |
温瑞英,王红勇. 基于因子分析和K−means聚类的空中交通复杂性评价[J]. 太原理工大学学报,2016,47(3):384-388,404. DOI: 10.16355/j.cnki.issn1007-9432tyut.2016.03.020
WEN Ruiying,WANG Hongyong. Evaluation of air traffic complexity based on factor analysis and K-means clustering[J]. Journal of Taiyuan University of Technology,2016,47(3):384-388,404. DOI: 10.16355/j.cnki.issn1007-9432tyut.2016.03.020
|
[7] |
SINAGA K P,YANG M-S. Unsupervised K-means clustering algorithm[J]. IEEE Access,2020,8:80716-80727. DOI: 10.1109/ACCESS.2020.2988796
|
[8] |
BAIG A,MASOOD S,TARRAY T A. Improved class of difference-type estimators for population median in survey sampling[J]. Communications in Statistics-Theory and Methods,2019,49(23):5778-5793.
|
[9] |
LIAO Kaiyang,LIU Guizhong. An efficient content based video copy detection using the sample based hierarchical adaptive k-means clustering[J]. Journal of Intelligent Information Systems,2015,44(1):133-158. DOI: 10.1007/s10844-014-0332-5
|
[10] |
PALMER C R,FALOUTSOS C. Density biased sampling:an improved method for data mining and clustering[J]. ACM SIGMOD Record,2000,29(2):82-92. DOI: 10.1145/335191.335384
|
[11] |
HUANG Jianbin,SUN Heli,KANG Jianmei,et al. ESC:an efficient synchronization-based clustering algorithm[J]. Knowledge-Based Systems,2013,40:111-122. DOI: 10.1016/j.knosys.2012.11.015
|
[12] |
MINAEI-BIDGOLI B,PARVIN H,ALINEJAD-ROKNY H,et al. Effects of resampling method and adaptation on clustering ensemble efficacy[J]. Artificial Intelligence Review,2014,41(1):27-48. DOI: 10.1007/s10462-011-9295-x
|
[13] |
AGGARWAL A, DESHPANDE A, KANNAN R. Adaptive sampling for K-means clustering[C]. 12th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems/13th International Workshop on Randomization and Computation, Berkeley, 2009: 15-28.
|
[14] |
KUMAR K M,REDDY A R M. An efficient K-means clustering filtering algorithm using density based initial cluster centers[J]. Information Sciences,2017,418/419:286-301. DOI: 10.1016/j.ins.2017.07.036
|
[15] |
SÁEZ J A,KRAWCZYK B,WOŹNIAK M. Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets[J]. Pattern Recognition,2016,57:164-178. DOI: 10.1016/j.patcog.2016.03.012
|
[16] |
胡欢. 多维数据上近似聚集和最近邻查询的高效算法[D]. 哈尔滨: 哈尔滨工业大学, 2021.
HU Huan. Efficient algorithms for approximate aggregation and nearest neighbor queries over multi-dimensional data[D]. Harbin: Harbin Institute of Technology, 2021.
|
[17] |
李建忠. 面向社交网络的科技领域事件检测系统的研究与实现[D]. 西安: 西安电子科技大学, 2019.
LI Jianzhong. Researches and implementation of technology event detection in social networks[D]. Xi'an: Xidian University, 2019.
|
[18] |
周萌. 基于多粒度级联森林哈希学习的图像检索[D]. 重庆: 重庆邮电大学, 2019.
ZHOU Meng. Multi-grained cascade forest based hashing for image retrieval[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2019.
|
[19] |
NELSON K P,THISTLETON W J. Comments on "Generalized Box-Müller method for generating q-Gaussian random deviates"[J]. IEEE Transactions on Information Theory,2021,67(10):6785-6789. DOI: 10.1109/TIT.2021.3071489
|
[20] |
谷晓忱,张民选. 一种基于FPGA的高斯随机数生成器的设计与实现[J]. 计算机学报,2011,34(1):165-173. DOI: 10.3724/SP.J.1016.2011.00165
GU Xiaochen,ZHANG Minxuan. Design and implementation of a FPGA based Gaussian random number generator[J]. Chinese Journal of Computers,2011,34(1):165-173. DOI: 10.3724/SP.J.1016.2011.00165
|
[21] |
ARNAIZ-GONZÁLEZ Á,DÍEZ-PASTOR J-F,RODRÍGUEZ J J,et al. Instance selection of linear complexity for big data[J]. Knowledge-Based Systems,2016,107:83-95. DOI: 10.1016/j.knosys.2016.05.056
|
1. |
祁瑞敏,张国栋,代皓轩. 基于改进模糊信息融合的煤矿带式输送机健康诊断. 电子测试. 2024(01): 16-20 .
![]() | |
2. |
祁瑞敏,王新. 煤矿带式输送机健康诊断方法. 工矿自动化. 2019(02): 75-78 .
![]() |