YU Lu, TANG Chaoli, HUANG Yourui, et al. Research on tightly combined positioning method of coal mine robot based on UWB and IMU[J]. Journal of Mine Automation,2022,48(12):79-85. DOI: 10.13272/j.issn.1671-251x.2022070058
Citation: YU Lu, TANG Chaoli, HUANG Yourui, et al. Research on tightly combined positioning method of coal mine robot based on UWB and IMU[J]. Journal of Mine Automation,2022,48(12):79-85. DOI: 10.13272/j.issn.1671-251x.2022070058

Research on tightly combined positioning method of coal mine robot based on UWB and IMU

More Information
  • Received Date: July 20, 2022
  • Revised Date: December 02, 2022
  • Available Online: November 27, 2022
  • The underground coal mine environment is complex. The existing coal mine robot positioning methods have low positioning precision and low real-time performance caused by the non-line-of-sight (NLOS) error and other factors. In order to solve the above problems, a tightly combined positioning method of coal mine robot based on UWB (Ultra Wide Band) and IMU (Inertial Measurement Unit) is proposed. Firstly, the UWB module is used to measure distance between the coal mine robot and UWB base station. The least square support vector machine (LSSVM) model is trained by using real value and measured value of the distance between the coal mine robot and the UWB base station, and the modified LSSVM model is obtained. Secondly, the measured value measured by the UWB module during the positioning process of the coal mine robot is used as the input of the modified LSSVM model. The modified LSSVM model is used to correct the measured value of UWB, reduce the influence of NLOS error on positioning precision, and obtain more accurate distance information. Finally, the range information modified by modified LSSVM model is used as the measurement input of error-state Kalman filter (ESKF). The measurement equation is formed with the position information solved by inertial navigation. The ESKF is used to tightly combine the UWB ranging correction value with the range information calculated by the inertial navigation to complete the state update. The more precise position information of the coal mine robot is obtained, and the precise positioning of the coal mine robot is achieved. The simulation results under different layont schemes of UWB base stations show that using modified LSSVM model can make the UWB range information more accurate, and improve the positioning precision. In the static positioning experiment, when the four UWB base stations are symmetrically distributed at the same height, the root mean square error of the positioning is reduced from 0.146 4 m to 0.139 8 m. When the four UWB base stations are distributed symmetrically with unequal heights, the root mean square error decreases from 0.300 8 m to 0.200 6 m. When the four base stations are distributed irregularly, the root mean square error decreases from 0.317 5 m to 0.314 2 m. Therefore, in actual scenarios, the UWB base stations should be arranged symmetrically at the same height as possible. In the dynamic positioning experiment, the fusion positioning trajectory corrected by the modified LSSVM model is closer to the real trajectory of the coal mine robot than the fusion positioning trajectory before correction. The result verifies that the tightly combined positioning method can reduce the NLOS error and improve positioning precision.
  • [1]
    柳玉龙. 煤矿搜救机器人的研究现状及关键技术分析[J]. 矿山机械,2013,41(3):7-12. DOI: 10.16816/j.cnki.ksjx.2013.03.002

    LIU Yulong. Analysis on current research status and key technologies of mine search and rescue robots[J]. Mining & Processing Equipment,2013,41(3):7-12. DOI: 10.16816/j.cnki.ksjx.2013.03.002
    [2]
    张晓莉,王张哲. 井下巡检机器人实时高精度定位方法[J]. 矿业研究与开发,2021,41(10):158-161. DOI: 10.13827/j.cnki.kyyk.2021.10.027

    ZHANG Xiaoli,WANG Zhangzhe. Real-time and high-precision positioning method of underground patrol robot[J]. Mining Research and Development,2021,41(10):158-161. DOI: 10.13827/j.cnki.kyyk.2021.10.027
    [3]
    谭玉新,杨维. 一种基于UKF的井下机器人超声网络定位方法[J]. 煤炭学报,2016,41(9):2396-2404. DOI: 10.13225/j.cnki.jccs.2016.0075

    TAN Yuxin,YANG Wei. UKF-based ultrasonic network localization for a mine robot[J]. Journal of China Coal Society,2016,41(9):2396-2404. DOI: 10.13225/j.cnki.jccs.2016.0075
    [4]
    陈美蓉,王凯,张嘉纯,等. 煤矿井下超宽带定位混合解算方法[J]. 工矿自动化,2021,47(3):53-59. DOI: 10.13272/j.issn.1671-251x.17710

    CHEN Meirong,WANG Kai,ZHANG Jiachun,et al. Hybrid solution method for ultra-wideband positioning in coal mines[J]. Industry and Mine Automation,2021,47(3):53-59. DOI: 10.13272/j.issn.1671-251x.17710
    [5]
    马宏伟,张璞,毛清华,等. 基于捷联惯导和里程计的井下机器人定位方法研究[J]. 工矿自动化,2019,45(4):35-42. DOI: 10.13272/j.issn.1671-251x.2018100054

    MA Hongwei,ZHANG Pu,MAO Qinghua,et al. Research on positioning method of underground robot based on strapdown inertial navigation and odometer[J]. Industry and Mine Automation,2019,45(4):35-42. DOI: 10.13272/j.issn.1671-251x.2018100054
    [6]
    杨金衡,宋单阳,田慕琴,等. 基于自适应卡尔曼滤波的双惯导采煤机定位方法[J]. 工矿自动化,2021,47(7):14-20,28. DOI: 10.13272/j.issn.1671-251x.2021030113

    YANG Jinheng,SONG Danyang,TIAN Muqin,et al. Double inertial navigation shearer positioning method based on adaptive Kalman filter[J]. Industry and Mine Automation,2021,47(7):14-20,28. DOI: 10.13272/j.issn.1671-251x.2021030113
    [7]
    贺磊,魏明生,仇欣宇,等. 基于UWB的井下人员定位算法研究[J]. 工矿自动化,2022,48(6):134-138.

    HE Lei,WEI Mingsheng,QIU Xinyu,et al. Research on positioning algorithm of underground personnel based on UWB[J]. Journal of Mine Automation,2022,48(6):134-138.
    [8]
    火元亨. 基于惯性导航和UWB定位的室内无人车导航技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    HUO Yuanheng. Indoor unmanned vehicle navigation based on inertial navigation and UWB positioning[D]. Harbin: Harbin Institute of Technology, 2021.
    [9]
    牛小骥,旷俭,陈起金. 采用MEMS惯导的小口径管道内检测定位方案可行性研究[J]. 传感技术学报,2016,29(1):40-44. DOI: 10.3969/j.issn.1004-1699.2016.01.008

    NIU Xiaoji,KUANG Jian,CHEN Qijin. Study on the possibility of the PIG positioning using MEMS-based IMU[J]. Chinese Journal of Sensors and Actuators,2016,29(1):40-44. DOI: 10.3969/j.issn.1004-1699.2016.01.008
    [10]
    张宝军,陈曦,廖延娜,等. 基于DL−LSTM的UWB/INS室内定位算法[J]. 传感器与微系统,2021,40(10):147-150. DOI: 10.13873/J.1000-9787(2021)10-0147-04

    ZHANG Baojun,CHEN Xi,LIAO Yanna,et al. UWB/INS indoor positioning algorithm based on DL-LSTM[J]. Transducer and Microsystem Technologies,2021,40(10):147-150. DOI: 10.13873/J.1000-9787(2021)10-0147-04
    [11]
    XU Yuan,LI Yueyang,CHOON K A,et al. Seamless indoor pedestrian tracking by fusing INS and UWB measurements via LS-SVM assisted UFIR filter[J]. Neurocomputing,2020,388:301-308. DOI: 10.1016/j.neucom.2019.12.121.
    [12]
    蒋来来. 基于LSSVM优化的电厂NO_x排放预测方法研究[D]. 保定: 华北电力大学, 2021.

    JIANG Lailai. Research on NO_x emission prediction method of power plant based on optimized LSSVM [D]. Baoding: North China Electric Power University, 2021.
    [13]
    邹强,陆甫光,兰馗博,等. 基于ISRUKF的UWB/INS组合室内定位方法研究[J]. 天津大学学报(自然科学与工程技术版),2022,55(5):496-503.

    ZOU Qiang,LU Fuguang,LAN Kuibo,et al. UWB/INS combined indoor positioning method based on ISRUKF[J]. Journal of Tianjin University (Science and Technology),2022,55(5):496-503.
    [14]
    SHIN E H. Estimation techniques for low-cost inertial navigation[D]. Calgary: University of Calgary (Canada), 2005.
    [15]
    秦永元, 张洪钺, 汪叔华. 卡尔曼滤波与组合导航原理[M]. 西安: 西北工业大学出版社, 2015.

    QIN Yongyuan, ZHANG Hongyu, WANG Shuhua. Kalman filtering and combinatorial navigation principle[M]. Xi'an: Northwestern Polytechnical University Press, 2015.
    [16]
    FENG Daquan,WANG Chunqi,HE Chunlong,et al. Kalman-filter-based integration of IMU and UWB for high-accuracy indoor positioning and navigation[J]. IEEE Internet of Things Journal,2020,7(4):3133-3146. DOI: 10.1109/JIOT.2020.2965115
    [17]
    徐爱功,刘韬,隋心,等. UWB/INS紧组合的室内定位定姿方法[J]. 导航定位学报,2017,5(2):14-19. DOI: 10.3969/j.issn.2095-4999.2017.02.003

    XU Aigong,LIU Tao,SUI Xin,et al. Indoor positioning and attitude determination method based on UWB/INS tightly coupled[J]. Journal of Navigation and Positioning,2017,5(2):14-19. DOI: 10.3969/j.issn.2095-4999.2017.02.003
    [18]
    王川阳,王坚. 超宽带应急定位基站布设研究[J]. 测绘科学,2019,44(8):174-181. DOI: 10.16251/j.cnki.1009-2307.2019.08.025

    WANG Chuanyang,WANG Jian. Study of base station layout of ultra wideband emergency positioning[J]. Science of Surveying and Mapping,2019,44(8):174-181. DOI: 10.16251/j.cnki.1009-2307.2019.08.025
  • Related Articles

    [1]WANG Xueming, HUANG Jingzhi, SONG Chuanzhi, WU Daifeng. Locking control of underground signal lights based on improved Kalman filter and state observer[J]. Journal of Mine Automation, 2024, 50(11): 118-126, 141. DOI: 10.13272/j.issn.1671-251x.2024080066
    [2]LI Chengcheng, MA Lisen, TIAN Yuan, JIA Yunhong, JIA Qu, TIAN Weiqin, ZHANG Kai. An onboard video stabilization algorithm for roadheader based on CLAHE and Kalman filter[J]. Journal of Mine Automation, 2023, 49(5): 66-73. DOI: 10.13272/j.issn.1671-251x.2022100002
    [3]SONG Danyang, LU Chungui, TAO Xinya, YANG Jinheng, WANG Pei'en, ZHENG Wenqiang, SONG Jiancheng. Hydraulic support straightening method based on maximum correntropy Kalman filtering algorithm[J]. Journal of Mine Automation, 2022, 48(11): 119-124. DOI: 10.13272/j.issn.1671-251x.2022020030
    [4]YANG Jinheng, SONG Danyang, TIAN Muqin, SONG Jiancheng, XU Chunyu. Double inertial navigation shearer positioning method based on adaptive Kalman filter[J]. Journal of Mine Automation, 2021, 47(7): 14-20. DOI: 10.13272/j.issn.1671-251x.2021030113
    [5]SUN Zhexing , WANG Yanwen. Two-dimensional accurate personnel positioning method in underground coal mine based on Kalman filter[J]. Journal of Mine Automation, 2018, 44(5): 31-35. DOI: 10.13272/j.issn.1671-251x.17318
    [6]ZHANG Lingtao, ZHANG Hui. Measurement algorithm of heading angle of roadheader based on Kalman filter[J]. Journal of Mine Automation, 2014, 40(11): 100-103. DOI: 10.13272/j.issn.1671-251x.2014.11.024
    [7]ZHAO Jing. Inertial navigation positioning method of shearer based on Kalman filtering algorithm[J]. Journal of Mine Automation, 2014, 40(10): 29-32. DOI: 10.13272/j.issn.1671-251x.2014.10.009
    [8]LUO Yu-feng, LIU Yong, LI Fang. Application of Kalman filter in underground personnel tracking and positioning[J]. Journal of Mine Automation, 2013, 39(9): 54-58. DOI: 10.7526/j.issn.1671-251X.2013.09.015
    [9]WANG Sha-sha, LOU Gao-feng, TANG Xia, SHI Li-ping, ZHANG En-feng. State of charge estimation of battery in mine-used movable lifesaving cabin based on extended Kalman filtering method[J]. Journal of Mine Automation, 2013, 39(2): 43-47.
    [10]LIU Rui-fang, MEI Xiao-a. Nonlinear Correction of Methane Sensor Based on Least Square Support Vector Machine[J]. Journal of Mine Automation, 2009, 35(5): 8-12.
  • Cited by

    Periodical cited type(11)

    1. 马庆禄,汪军豪,张杰,邹政. 激光雷达与惯性测量单元同步融合下的园区三维建图. 光学精密工程. 2024(03): 422-434 .
    2. 周波,唐桂彬. 基于遥感GIS信息融合的测绘机器人滑模跟踪控制系统. 计算机测量与控制. 2024(06): 125-132 .
    3. 高毅楠,姚顽强,蔺小虎,郑俊良,马柏林,冯玮,高康洲. 煤矿井下多重约束的视觉SLAM关键帧选取方法. 煤炭学报. 2024(S1): 472-482 .
    4. 倪志平,卢光云. 激光雷达实时采集数据的车辆智能定位方法研究. 激光杂志. 2024(09): 218-222 .
    5. 覃学宁,钟辉,岳志伟,何瑞冠,冷泉,李飞. 基于轨迹重构与贝叶斯推理的空中机器人灯塔距离测绘技术. 计算机测量与控制. 2024(10): 291-297 .
    6. 胡青松,李敬雯,张元生,李世银,孙彦景. 面向矿井无人驾驶的IMU与激光雷达融合SLAM技术. 工矿自动化. 2024(10): 21-28 . 本站查看
    7. 马亮,高亮,廉博翔,张琦,蔺小虎,姜之跃. 基于已知点约束的高精度煤矿巷道三维点云建模方法. 工矿自动化. 2024(11): 78-83+151 . 本站查看
    8. 马宏伟,苏浩,薛旭升,李超,郭逸风,王星,周文剑,崔闻达,喻祖坤,成佳帅. 煤矿井下移动机器人激光标靶定位方法研究. 煤炭科学技术. 2024(11): 60-73 .
    9. 景宁波,马宪民,郭卫,秦学斌. 改进动态半径的矿井激光雷达点云滤波算法. 西安科技大学学报. 2023(02): 406-413 .
    10. 高海跃,王凯,王保兵,王丹丹. 基于全局点云地图的煤矿井下无人机定位方法. 工矿自动化. 2023(08): 81-87+133 . 本站查看
    11. 王媛媛. 基于多传感信息融合的学前教育机器人导航定位研究. 自动化与仪器仪表. 2023(09): 233-236 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1176) PDF downloads (59) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return