ZHAO Kangkang, LIU Bo. Intelligent control system design for water treatment device in coal mine[J]. Journal of Mine Automation,2022,48(12):151-157. DOI: 10.13272/j.issn.1671-251x.2022050056
Citation: ZHAO Kangkang, LIU Bo. Intelligent control system design for water treatment device in coal mine[J]. Journal of Mine Automation,2022,48(12):151-157. DOI: 10.13272/j.issn.1671-251x.2022050056

Intelligent control system design for water treatment device in coal mine

More Information
  • Received Date: May 19, 2022
  • Revised Date: December 07, 2022
  • Available Online: August 29, 2022
  • The water treatment device for emulsion preparation in fully mechanized mining face mostly adopts manual or hydraulic control mode for water preparation and filter element cleaning. It is unable to monitor water production data and device working status in real-time. It has low degree of automation, complex operation and heavy maintenance workload. By analyzing intelligent control requirements of the water treatment device in underground coal mine, a thermal redundancy scheme of double controllers is designed. The scheme has two controllers that are used to realize the water preparation and automatic cleaning functions of the water treatment device respectively. Based on the scheme, an intelligent control system for water treatment device in underground coal mine is designed. The KXH12B mine-used intrinsically safe controller is used as the core control unit to collect the data of water tank level sensor, pressure sensor, flow sensor and conductivity meter. The water treatment device operation status is monitored in real-time. The two controllers work in a master-slave mode. The master-slave controllers realize control functions of automatic water preparation and automatic cleaning respectively. When the main controller fails, its water preparation function can be automatically switched to the slave controller. This ensures that the water for emulsion preparation in coal mine is not affected. The test platform is built to test the system, and the results show that the system realizes control functions of automatic water preparation, automatic cleaning and data monitoring. The system also realizes the hot-switching function of master and slave controllers. The system has been applied to the water treatment device in a coal mine. It runs stably and reliably, and realizes unattended operation of the water treatment device in coal mine.
  • [1]
    席波,王诗翱,郭建伟. 矿用乳化液浓度在线检测系统设计[J]. 工矿自动化,2020,46(9):98-103. DOI: 10.13272/j.issn.1671-251x.2020040023

    XI Bo,WANG Shi'ao,GUO Jianwei. Design of on-line detection system of mine emulsion concentration[J]. Industry and Mine Automation,2020,46(9):98-103. DOI: 10.13272/j.issn.1671-251x.2020040023
    [2]
    向虎,张晶晶. 综采工作面乳化液配比用水深度处理技术探讨[J]. 煤矿机械,2013,34(5):252-254. DOI: 10.13436/j.mkjx.2013.05.057

    XIANG Hu,ZHANG Jingjing. Technical discussion about water depth treatment based on emulsion preparation in fully mechanized coal mining face[J]. Coal Mine Machinery,2013,34(5):252-254. DOI: 10.13436/j.mkjx.2013.05.057
    [3]
    陈伟,王存飞,边燕. 超大采高综采工作面乳化液泵站系统[J]. 工矿自动化,2021,47(4):6-12. DOI: 10.13272/j.issn.1671-251x.2020120020

    CHEN Wei,WANG Cunfei,BIAN Yan. Emulsion pump station system for super high fully mechanized working face[J]. Industry and Mine Automation,2021,47(4):6-12. DOI: 10.13272/j.issn.1671-251x.2020120020
    [4]
    李亚军,佟国峰. 液压支架乳化液的性能试验及其选择和维护方案[J]. 煤炭科学技术,2012,40(3):102-104. DOI: 10.13199/j.cst.2012.03.107.liyj.031

    LI Yajun,TONG Guofeng. Performance test on emulsion liquid of hydraulic powered support and selection and maintenance plan[J]. Coal Science and Technology,2012,40(3):102-104. DOI: 10.13199/j.cst.2012.03.107.liyj.031
    [5]
    韦文术,ZHANG J,张健恺,等. 煤矿井下水处理反渗透膜的污染机理研究[J]. 煤炭科学技术,2021,49(4):103-110. DOI: 10.13199/j.cnki.cst.2021.04.013

    WEI Wenshu,ZHANG J,ZHANG Jiankai,et al. Study on mechanism of reverse osmosis membrane pollution of water treatment in underground coal mine[J]. Coal Science and Technology,2021,49(4):103-110. DOI: 10.13199/j.cnki.cst.2021.04.013
    [6]
    王旭辉,邹元龙,赵锐锐,等. 高矿化度矿井废水深度处理及回用[J]. 中国给水排水,2009,25(22):56-58. DOI: 10.3321/j.issn:1000-4602.2009.22.015

    WANG Xuhui,ZOU Yuanlong,ZHAO Ruirui,et al. Advanced treatment and teuse of highly mineralized mine wastewater[J]. China Water & Wastewater,2009,25(22):56-58. DOI: 10.3321/j.issn:1000-4602.2009.22.015
    [7]
    朱泽民,刘晨. 超滤−反渗透双膜法在甘肃某矿井水处理中的应用[J]. 给水排水,2019,55(6):77-81.

    ZHU Zemin,LIU Chen. Application of a mine water treatment station with ultrafiltration-reverse osmosis double membrane process in Gansu Province[J]. Water & Wastewater Engineering,2019,55(6):77-81.
    [8]
    李大庆. JMSGLQ−70C型井下在线自清洗精密水过滤站应用[J]. 同煤科技,2014(3):47-49. DOI: 10.3969/j.issn.1000-4866.2014.03.017

    LI Daqing. Application of JMSGLQ-70C underground online self-cleaning precise water filtration station[J]. Science and Technology of Datong Coal Mining Administration,2014(3):47-49. DOI: 10.3969/j.issn.1000-4866.2014.03.017
    [9]
    陈港,孟巧荣,王然风,等. 井下净水站过滤装置液压系统设计与建模仿真研究[J]. 煤炭工程,2018,50(5):146-149.

    CHEN Gang,MENG Qiaorong,WANG Ranfeng,et al. Design and model simulation of filtration device hydraulic system for underground water treatment plant[J]. Coal Engineering,2018,50(5):146-149.
    [10]
    谢国正. 综采工作面智能化技术与装备的发展浅析[J]. 陕西煤炭,2020,39(3):181-183. DOI: 10.3969/j.issn.1671-749X.2020.03.044

    XIE Guozheng. Analysis on the development of intelligent technology and equipment in fully mechanized mining face[J]. Shaanxi Coal,2020,39(3):181-183. DOI: 10.3969/j.issn.1671-749X.2020.03.044
    [11]
    李然,王伟. 综采集成供液系统智能监测诊断技术现状与发展[J]. 煤炭科学技术,2016,44(3):91-95. DOI: 10.13199/j.cnki.cst.2016.03.018

    LI Ran,WANG Wei. Status and development of intelligent monitoring and diagnosis technology for fully-mechanized integrated pressure pumping system[J]. Coal Science and Technology,2016,44(3):91-95. DOI: 10.13199/j.cnki.cst.2016.03.018
    [12]
    张帅,任怀伟,韩安,等. 复杂条件工作面智能化开采关键技术及发展趋势[J]. 工矿自动化,2022,48(3):16-25. DOI: 10.13272/j.issn.1671-251x.2021090041

    ZHANG Shuai,REN Huaiwei,HAN An,et al. Key technology and development trend of intelligent mining in complex condition working face[J]. Journal of Mine Automation,2022,48(3):16-25. DOI: 10.13272/j.issn.1671-251x.2021090041
    [13]
    冯旭. 基于无人值守的综采工作面乳化液远程自动配液系统的应用研究[J]. 中国煤炭,2016,42(4):66-70. DOI: 10.3969/j.issn.1006-530X.2016.04.014

    FENG Xu. Research and application of remote automatic liquid mixing system of emulsion in unattended fully mechanized working face[J]. China Coal,2016,42(4):66-70. DOI: 10.3969/j.issn.1006-530X.2016.04.014
    [14]
    YIN Wenqiang,LI Xin,RADITYA S S,et al. Fouling behavior of isolated dissolved organic fractions from seawaterin reverse osmosis(RO) desalination process[J]. Water Research,2019,159:385-396. DOI: 10.1016/j.watres.2019.05.038
    [15]
    邱成鹏. 采煤工作面供液控制系统控制器的设计与应用[J]. 煤矿机电,2014(1):45-48. DOI: 10.3969/j.issn.1001-0874.2014.01.014

    QIU Chengpeng. Design and application of pumping controller in integrated fluid supply system at fully mechanized working face[J]. Colliery Mechanical & Electrical Technology,2014(1):45-48. DOI: 10.3969/j.issn.1001-0874.2014.01.014
    [16]
    石进水. 基于LPC2294处理器的嵌入式PLC的设计[J]. 计算机测量与控制,2013,21(1):230-232. DOI: 10.3969/j.issn.1671-4598.2013.01.073

    SHI Jinshui. Design of embedded PLC based on LPC2294[J]. Computer Measurement & Control,2013,21(1):230-232. DOI: 10.3969/j.issn.1671-4598.2013.01.073
  • Related Articles

    [1]TAO Long, GUO Yanfei. Feature extraction of coal mine ventilator vibration signals based on improved variational mode decomposition[J]. Journal of Mine Automation, 2025, 51(2): 131-137. DOI: 10.13272/j.issn.1671-251x.2024120015
    [2]WANG Zhongqiang, LI Zhonghui, ZHANG Xin, ZANG Zesheng, ZHANG Quancong, WANG Xuebing. Study on variation law and mechanism of coal potential signal with different lithology[J]. Journal of Mine Automation, 2022, 48(2): 131-137. DOI: 10.13272/j.issn.1671-251x.2021100018
    [3]DANG Weichao, SHI Yunlong, BAI Shangwang, GAO Gaimei, LIU Chunxia. Inspection behavior detection of underground power distribution room based on conditional variational auto-encoder[J]. Journal of Mine Automation, 2021, 47(12): 98-105. DOI: 10.13272/j.issn.1671-251x.2021030087
    [4]LIU Tianqi. Research on the minimum ignition temperature variation law of coal dust cloud with different coal quality[J]. Journal of Mine Automation, 2019, 45(9): 80-85. DOI: 10.13272/j.issn.1671-251x.2018120078
    [5]JIANG Zilong, CHEN Wenlong, LIU Youjian. Research on variation law of secondary stress on working face of Guotun Coal Mine[J]. Journal of Mine Automation, 2017, 43(4): 18-21. DOI: 10.13272/j.issn.1671-251x.2017.04.005
    [6]KONG Yanhui, LI Zhonghui, QIU Liming, SHEN Rongxi. Research on variation rule of surface potential of coal rock during water-inrush process[J]. Journal of Mine Automation, 2017, 43(1): 38-42. DOI: 10.13272/j.issn.1671-251x.2017.01.010
    [7]LYU Ganggang, SHEN Rongxi, QIU Liming, ZHAO Cong, QI Jinxing, WANG Jinghao. Experimental research of variation characteristics of electromagnetic radiation, acoustic emission and surface electric potential during water inrush in mine floor[J]. Journal of Mine Automation, 2015, 41(10): 16-19. DOI: 10.13272/j.issn.1671-251x.2015.10.005
    [8]DU Chunlei, ZHANG Xueying, LI Fenglia. Application of improved CART algorithm in prediction of water inrush from coal seam floor[J]. Journal of Mine Automation, 2014, 40(12): 52-56. DOI: 10.13272/j.issn.1671-251x.2014.12.014
    [9]LIANG Xiang-hong~, ZHANG Qin~. Design of CAN Interface of Mine-used Communication Substation Based on ARM[J]. Journal of Mine Automation, 2009, 35(3): 4-7.
    [10]ZHAO Cang-rong, ZHOU Meng-ra. Underground Gas Monitoring and Control System with CAN Bus Based on ARM[J]. Journal of Mine Automation, 2008, 34(6): 13-16.
  • Cited by

    Periodical cited type(2)

    1. 陈伟,陈志良,侯强. 煤矿井下液压锚杆钻机钻臂定位控制方法. 自动化与仪表. 2024(08): 29-33+39 .
    2. 李富强. 锚杆钻车施工影响因素分析. 中国机械. 2023(33): 90-93 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (270) PDF downloads (43) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return